REDACTED

SITE INSPECTION PRIORITIZATION REPORT
DAYTON WALTHER CORPORATION
CARROLL COUNTY, KENTUCKY
KYD059564385
MARCH 28, 1995

DISPOSITION

SAM SIGNATURE

NFRAP

PHILLIP J. SHEPHERD SECRETARY



COMMONWEALTH OF KENTUCKY
NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET

DEPARTMENT FOR ENVIRONMENTAL PROTECTION
FRANKFORT OFFICE PARK

14 REILLY ROAD FRANKFORT, KENTUCKY 40601

March 28, 1995

REC'D.

Ms. Ramona J. Klein U.S. EPA, Region IV 345 Courtland Street, N.E. Atlanta, Georgia 30365 APR 10 1995 WPB-SAS

Re: Site Inspection Prioritization, Dayton Walther Corporation

Dear Ms. Klein:

Attached is the Site Inspection Prioritization Report for Dayton Walther Corporation of Carroll County, Kentucky (KYD059564385). The Florence Field Office of this department inspects this facility under the RCRA and KPDES programs. The site was first investigated in 1985 in response to the discovery of 1,1,1-trichloroethylene in groundwater from wells on adjacent property belonging to Dow Corning Corporation, who did not use 1,1,1-trichloroethylene. Dayton Walther once used it as a degreaser in their operations, and had a leak in a collection sump which was repaired. Dow Corning subsequently discovered that an old landfill on their property, active in the 1960's, was the probable source of the contamination.

Recent surface soil contamination resulting from spills around two sumps and where a rail tank car was used to store waste has been excavated and disposed of off site. Tanker trucks are now used to store and haul liquid waste from the plant. The facility is a RCRA Full Quantity Generator and is in compliance with that program. Contaminated soil discovered during the spill cleanup is the result of historic operations. Full characterization is underway at this time, and a report of the findings is due by the first of May.

We do not feel that further action under CERCLA is warranted, although a site score cannot be determined until the latest findings are evaluated. Any necessary remedial action will be handled under state authority.

Sincerely,

effrey W. Pratt,

Manager, Superfund Branch

## SITE INSPECTION PRIORITIZATION REPORT

DAYTON WALTHER CORPORATION

CARROLL COUNTY, KENTUCKY

KYD059564385

MARCH 28, 1995

Robert Pugh Superfund Branch Kentucky Division of Waste Management

#### TABLE OF CONTENTS

| IntroductionPage               | e1  |
|--------------------------------|-----|
| Site Description and History   | -1  |
| GroundwaterPathway             | - 2 |
| Surface Water Pathway          | - 3 |
| Soil Exposure and Air Pathways | - 3 |
| Conclusion                     | - 3 |
| References                     | - 5 |
| Site MapsAppendix              |     |
|                                |     |
| Site Inspection Report         | - B |
| Correspondence                 | - C |
| Climate and Soil Data          | - E |

#### SITE INSPECTION PRIORITIZATION

#### DAYTON WALTHER CORPORATION CARROLL COUNTY, KENTUCKY KYD059564385

#### INTRODUCTION

The Superfund Branch of the Kentucky Division of Waste Management has performed this Site Inspection Prioritization (SIP) under the of cooperative agreement with the United States a Environmental Protection Agency and the authority of Comprehensive Environmental Response, Compensation and Liability 1980 (CERCLA) the Superfund and Amendments Reauthorization Act of 1986 (SARA). This SIP will update the Site Investigation conducted by NUS Corporation in 1989 using RCRA and CERCLA file material and information obtained on a site visit of December 6, 1994. The appropriate future course of action will be determined based on this information.

#### SITE DESCRIPTION AND HISTORY

Dayton Walther Corporation is located 4 miles northeast of Carrollton, Kentucky at 7964 Kentucky Drive, which is U.S. 42. Its 46 acres are bounded on the north by cropland and the Ohio River, on the east by cropland, on the south by foothills and on the west by the Dow Corning Corporation. The site is on a relatively flat alluvial plain and drains to the south into McCools Creek which then flows north to the Ohio River. Geographic coordinates are 38.42'30" North latitude, 85.26'30" West longitude (ref. 1).

The Dayton Walther Corporation of Dayton, Ohio owns this Facility. Brake drums and other automotive parts are manufactured in two separate operations at the site. First, Carrollton Castings produces cast parts by melting scrap iron and molding it in foundry sand. The castings are then taken to the machining plant next door where they are tooled and finished to create final products for shipping.

Dayton Walther, Carrollton has been in operation since 1972. Waste oil was reported spilled from a collection sump on April 12, 1983. There are two waste oil sumps on the west side of the machining building which have automatic, level activated pumps to prevent overflow. A pump malfunction (failure) caused the overflow. The sumps contain cutting oil and floor washings, which in the early years of operation contained solvents used for degreasing of machinery. These solvents included 1,1,1-trichloroethane (TCA) and tetrachloroethylene (PCE). Dow Corning has a silicone plant adjacent to the west of Dayton Walther with groundwater withdrawal and monitoring wells. In May of 1985, traces of TCA were detected in samples from one of these wells. Since Dow Corning did not use

it was suspected that Dayton Walther was the source. According to personnel at the time, however, there had never been a leak in either sump and it was subsequently determined that an old landfill at Dow Corning, active in the 1960's, was the probable source of the contamination. In March and again in April of 1994 there were spills when the tank car into which the sumps were pumped overflowed. The practice at the time was to use the tank car for storage and when it was full it was pumped off into tank trucks for disposal off site. As a result of these spills, that practice has been changed to eliminate the rail car. The sumps are now pumped directly to tank trucks and shipped as necessary to prevent overflow. Apparently this has reduced risk of spillage. Contaminated soil from around the sumps and from the overflows has been removed from the site and properly disposed of. Walther now uses a non-hazardous, biodegradable degreaser (ref. 2). Dayton Walther has not been able to clean up the impacted soils to background levels and is in the process of characterizing the extent of contamination from the known spills and from historic The site has been in use since 1967 and ongoing minor operations. spills of similar wastes have accumulated in the area. retained a consultant and should have a remediation plan in the near future (ref. 3).

#### GROUNDWATER PATHWAY

This site is located in the Ohio River valley, a steep-sided, U-shaped trough formed during the Pleistocene Age when glacial melts eroded the limestone bedrock. Deposition of two layers of alluvium then filled the trough to a thickness of 180 feet. The lower strata is boulders and gravel topped with coarse sand. Above this is a layer of silt, clayey silt and fine sand, with lenses of gravel and coarse sand. Silurian, Devonian and Mississippian limestones and shales form the bedrock.

The alluvial aquifer is used for water in the Ohio River valley. It is 150 feet thick and flows northward to the river, except during periods of high water, when flow is reversed. Depth to the water table is about 50 feet in the area of the Dayton Walther plant. The Silurian Limestone underlying the alluvial aquifer has highly mineralized water and is not used due to the abundant supply at shallower depths. The two aquifers are hydrologically connected. The aquifer of concern is the alluvial aquifer, which receives recharge from the Ohio River, the Silurian Limestone and from precipitation. The average annual precipitation in the area is 41.5 inches, of which 6.5 inches percolates into the soil. The 2-year, 24 hour rainfall for Carroll County is 3.1 inches (ref.4).

The soil at this site is classified as the Wheeling series which consists of deep, well-drained, nearly level and strongly sloping

soils on stream terraces along the Ohio River. These soils formed in alluvium of mixed origin. They are underlain by sand and gravel at a depth of 3 to 5 feet. The root zone is deep, permeability is moderate and runoff is slow to medium. Available moisture capacity is high and organic matter content is low (ref. 5).

The principal groundwater user in the area is Dow Corning. They have 13 wells screened in the alluvial aquifer and are permitted to withdraw up to 15 million gallons per day (ref.6). This tremendous drawdown must create a cone of depression that alters groundwater flow under the Dayton Walther plant. Any contamination migrating from surface soils at Dayton Walther would be pulled into the well field at Dow corning. The 260 employees at Dow Corning are ground water targets, but as this water is monitored and municipal water is available the risk to their health is minimal.

#### SURFACE WATER PATHWAY

Surface water from the site flows east from the southern end of the property and enters McCools Creek 1500 feet from the site boundary. This creek then flows north 5000 feet to the Ohio River. The 15 mile surface water pathway ends at river mile 554 near the Carroll County line. There are no surface water intakes within this target distance. The KPDES discharge from the site is about 22,000 gallons a day. McCools Creek is a slow moving stream and the discharge of the Ohio River averages 114,500 cubic feet per second at Markland Dam at river mile 531.5, the closest gauging station to the site (ref. 7). The Ohio River is used for recreation and both commercial and recreational fishing. There are three federally endangered species in the river habitat. One is a tern and two are mussels.

#### SOIL EXPOSURE AND AIR PATHWAYS

The site is fenced so only employees are potentially exposed to any soil contamination on site. Particulate emissions are controlled by baghouses on the foundry cupola. According to 1980 census data, 5917 people live within a 4-mile radius of the site. These people are concentrated in the Town of Ghent, 3 miles northeast of the site, and part of Carrollton, 4 miles southwest of the site. A few people live in scattered locations between the towns. There are no schools or day care centers near the site. No stressed vegetation was seen during the site visit of December 6, 1994.

#### CONCLUSION

The Dayton Walther Corporation site was evaluated to assess the threat to human health and the environment and to determine the need for additional investigation. From the information gathered in this study of the site it is recommended that the company be

allowed to proceed with site characterization and submit a plan for remediation of contaminated soils and any other contaminants found on site. Air emissions, surface water discharge and solid waste disposal are being monitored by relevant State programs.

#### REFERENCES

- 1. USGS 7.5 Minute Topographic Maps, Vevay South Quadrangle and Carrollton Quadrangle.
- 2. NUS Corporation, Final Screening Site Inspection Report, Dayton Walther Corporation, Carrollton, Kentucky, 1989.
- 3. David M. Rymph, Manager Environmental Compliance, Dayton Walther Corp, Letter to Deborah Lucas Angel, Environmental Control Supervisor, Kentucky Division of Waste Management, August 4, 1994.
- 4. Commonwealth of Kentucky, Department for Natural Resources and Environmental Protection, Bureau of Natural Resources, Division of Water Resources, Rainfall Frequency Values for Kentucky, Revised 1979.
- 5. USDA Soil Conservation Service, Soil Survey of McClean and Muhlenberg Counties, Kentucky, 1980.
- 6. Commonwealth of Kentucky, NREPC, DEP, Division of Water, Permit to Withdraw Public Water, #0586, Revised December 7, 1994.
- 7. USGS, Water-Data Report KY-93-1, Water Resources Data, Kentucky Water Year 1993, p.58.



## **COMMONWEALTH OF KENTUCKY** NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET

DEPARTMENT FOR ENVIRONMENTAL PROTECTION

FRANKFORT OFFICE PARK 14 REILLY ROAD FRANKFORT, KENTUCKY 40601

October 12, 1995

Ms. Ramona McConney USEPA, Region IV North Superfund Remedial Branch 345 Courtland Street, N.E. Atlanta, Georgia 30365

Dear Ms. McConney:

I have attached the latest sampling data from the Dayton Walther Carrolton Machining Center. The site is still being monitored by the Florence Field Office under the RCRA program. The company appears to be trying to clean up their site, therefore we do not believe further action under CERCLA is warranted. If you want to continue to receive sampling data we will be glad to forward it to you.

> Sincerely, Robert Rugh

Robert Pugh

Federal Superfund Section

| ias Site Names:                                                  |                                                                 |
|------------------------------------------------------------------|-----------------------------------------------------------------|
| Carrollton                                                       | County or Parish: Carroll State: KY                             |
|                                                                  | 95 Report type: SIP                                             |
| part developed by: Robert F                                      | ugh. KDEP                                                       |
|                                                                  |                                                                 |
| DECISION:                                                        |                                                                 |
| 1 L Further Remedial Site Ass                                    | ssessment under CERCLA (Superfund) is not required because:     |
| 1 1a. Site does not qual<br>site assessment u<br>(No Further Rem |                                                                 |
| 2. Further Assessment Need                                       | ded Under CERCLA: 2a. (optional) Priority:     Higher     Lower |
| . 2b. Activity     PA<br>Type:     SI                            | ESI<br>  HRS evaluation                                         |
| Other                                                            | r                                                               |
|                                                                  |                                                                 |
|                                                                  | <del></del>                                                     |
| DISCUSSION/RATIONALE:                                            | high enough to be a candidate for the NPL                       |
| _                                                                | undwater targets. Contamination is being                        |
|                                                                  |                                                                 |
| addressed under KI                                               | CRA authority. NFRAP.                                           |
| MONTESSED WINES                                                  |                                                                 |
| AUGIESEA WING                                                    |                                                                 |
| AUGIESE CO CONTROL                                               |                                                                 |
|                                                                  | Ramon Kai Ma Co. 12.22.                                         |
| Seport Reviewed RK McConn                                        | ney Signature: Ramona Klein McConney Date: 12.22.               |

EPA Form # 9100-3



# COMMONWEALTH OF KENTUCKY NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION

FRANKFORT OFFICE PARK
14 REILLY ROAD
FRANKFORT, KENTUCKY 40601

December 14, 1995

Ms. Ramona McConney USEPA Region IV 345 Courtland Street, NE Atlanta, GA 30365

Dear Ms. McConney:

Enclosed is the Prescore Hazard Ranking System disk for the Dayton Walther site. We still have not received the report on full site characterization so the site was scored with the most recent data available. We will continue to pursue site remediation as a state lead and report any findings that would impact EPA's decision regarding NPL eligibility.

Sincerely,

Robert Pugh

Federal Superfund Section

c: file

## PREscore 2.0 - PRESCORE.TCL File 05/11/93 NPL Characteristics Data Collection Form

PAGE:

1

## DAYTON WALTHER CORP - 12/14/95

#### Record Information

- 1. Site Name: DAYTON WALTHER CORP (as entered in CERCLIS)
- 2. Site CERCLIS Number: KYD059564385
- 3. Site Reviewer: ROBERT PUGH
- 4. Date: 11/28/95
- 5. Site Location: CARROLLTON/CARROLL, KENTUCKY (City/County, State)
- 6. Congressional District: 4
- 7. Site Coordinates: Multiple

Latitude: 38 42'30.0" Longitude: 085 26'30.0"

#### Site Description

- 1. Setting: Rural
- Current Owner: Private Industrial
- 3. Current Site Status: Active
- 4. Years of Operation: Active Site , from and to dates: 1967
- 5. How Initially Identified: State/Local Program
- 6. Entity Responsible for Waste Generation:
  - Manufacturing
    - Primary Metal Industries
    - Metal Coating
    - Fabr. Struc. Metal Prod.
- 7. Site Activities/Waste Deposition:
  - Waste Piles
  - Industrial Landfill
  - Spill

2

#### PREscore 2.0 - PRESCORE.TCL File 05/11/93 NPL Characteristics Data Collection Form DAYTON WALTHER CORP - 12/14/95

#### Waste Description

- 8. Wastes Deposited or Detected Onsite:
  - Inorganic Chemicals
  - Solvents
  - Fly and Bottom Ash
  - Oily Waste

#### Response Actions

- 9. Response/Removal Actions:
  - Emergency Waste Removal Has Occurred
  - Site Access Has Been Restricted
  - Other Removal Action Has Occurred

#### RCRA Information

- 10. For All Active Facilities, RCRA Site Status:
  - - Treatment, Storage & Disposal Facility
  - -Industrial Landfill

#### Demographic Information

- 11. Workers Present Onsite: Yes
- 12. Distance to Nearest Non-Worker Individual: > 10 Feet 1/4 Mile
- 13. Residential Population Within 1 Mile: 90.0
- 14. Residential Population Within 4 Miles: 5917.0

#### Water Use Information

- 15. Local Drinking Water Supply Source:
  - Ground Water (within 4 mile distance limit)
  - Surface Water (within 15 mile distance limit)

# PRESCORE 2.0 - PRESCORE.TCL File 05/11/93 NPL Characteristics Data Collection Form DAYTON WALTHER CORP - 12/14/95

16. Total Population Served by Local Drinking Water Supply Source: 260.0

- 17. Drinking Water Supply System Type for Local Drinking Water Supply Sources:
  - Municipal (Services over 25 People)
- 18. Surface Water Adjacent to/Draining Site:
  - Stream
  - River

PAGE: 3

1

#### PRESCORE 2.0 - PRESCORE.TCL File 05/11/93 PAGE: HRS DOCUMENTATION RECORD DAYTON WALTHER CORP - 12/14/95

1. Site Name: DAYTON WALTHER CORP-(as entered in CERCLIS)

2. Site CERCLIS Number: KYD059564385

3. Site Reviewer: ROBERT PUGH

4. Date: 11/28/95

5. Site Location: CARROLLTON/CARROLL, KENTUCKY (City/County, State)

6. Congressional District: 4

7. Site Coordinates: Multiple

Latitude: 38 42'30.0" Longitude: 085 26'30.0"

| -                                           |       |
|---------------------------------------------|-------|
|                                             | Score |
| Ground Water Migration Pathway Score (Sgw)  | 15.16 |
| Surface Water Migration Pathway Score (Ssw) | 1.52  |
| Soil Exposure Pathway Score (Ss)            | 1.20  |
| Air Migration Pathway Score (Sa)            | 0.25  |
|                                             |       |
| Site Score                                  | 7.64  |

#### NOTE

EPA uses the terms "facility," "site," and "release" interchangeably. The term "facility" is broadly defined in CERCLA to include any area where hazardous substances have "come to be located" (CERCLA Section 109(9)), and the listing process is not intended to define or reflect boundaries of such facilities or releases. Site names, and references to specific parcels or properties, are provided for general identification purposes only. Knowledge regarding the extent of sites will be refined as more information is developed during the RI/FS and even during implementation of the remedy.

### PREscore 2.0 - PRESCORE.TCL File 05/11/93 PAGE: 2 WASTE QUANTITY DAYTON WALTHER CORP - 12/14/95

1. WASTESTREAM QUANTITY SUMMARY TABLE, SOURCE: Spill

| a. Wastestream ID                            |          |
|----------------------------------------------|----------|
| b. Hazardous Constituent Quantity (C) (lbs.) | 0.00     |
| c. Data Complete?                            | NO       |
| d. Hazardous Wastestream Quantity (W) (lbs.) | 0.00     |
| e. Data Complete?                            | NO       |
| f. Wastestream Quantity Value (W/5,000)      | 0.00E+00 |

## PREscore 2.0 - PRESCORE.TCL File 05/11/93 PAGE: 3 WASTE QUANTITY

DAYTON WALTHER CORP - 12/14/95

#### 2. SOURCE HAZARDOUS WASTE QUANTITY FACTOR TABLE

| a. Source | e ID                                                   | Spill             |         |  |  |  |  |  |
|-----------|--------------------------------------------------------|-------------------|---------|--|--|--|--|--|
| b. Source | е Туре                                                 | Contaminated Soil |         |  |  |  |  |  |
| c. Secon  | dary Source Type                                       | N.A.              |         |  |  |  |  |  |
| d. Source | e Vol.(yd3/gal)   Source Area (ft2)                    | 50.00             | 1500.00 |  |  |  |  |  |
| e. Sourc  | e Volume/Area Value                                    | 2.00E-02          |         |  |  |  |  |  |
| 1         | ce Hazardous Constituent Quantity<br>Value (sum of 1b) | 0.00E+00          |         |  |  |  |  |  |
| g. Data   | Complete?                                              | NO                |         |  |  |  |  |  |
|           | e Hazardous Wastestream Quantity<br>Value (sum of 1f)  | 0.00E+00          |         |  |  |  |  |  |
| i. Data   | Complete?                                              | NO                |         |  |  |  |  |  |
| ſ         | e Hazardous Waste Quantity (HWQ)<br>e (2e, 2f, or 2h)  | 2.00E-02          |         |  |  |  |  |  |

| Source Hazardous Substances  | Depth<br>(feet) | Liquid | Concent. | Units |
|------------------------------|-----------------|--------|----------|-------|
| Lead Trichloroethane, 1,1,1- | < 2             | NO     | 1.2E+01  | ppm   |
|                              | < 2             | YES    | 1.0E-03  | ppm   |

#### Documentation for Source Type:

Spill was only partially cleaned up and much more contamination was found than expected, indicating ongoing practices resulting in years of potential releases to the soil.

Reference: 2

# PRESCORE 2.0 - PRESCORE.TCL File 05/11/93 WASTE QUANTITY

PAGE: 4

DAYTON WALTHER CORP - 12/14/95

Documentation for Source Hazardous Substances:

Solvent used to clean and finish products.

Reference: 2

Documentation for Source Volume:

This is an estimate. Over 900 cubic yards of soil and railroad ties have been removed offsite. The extent of remaining contamination has not yet been determined.

Reference: 3

Documentation for Source Area:

This is an estimate.

Reference: 3

PRESCORE 2.0 - PRESCORE.TCL File 05/11/93 PAGE: 5
WASTE QUANTITY
DAYTON WALTHER CORP - 12/14/95

#### 3. SITE HAZARDOUS WASTE QUANTITY SUMMARY

| No. Source ID | _          | • • | Constituent or<br>Wastestream<br>Value (2f,2h) | Waste Qty.<br>Value (2k) |
|---------------|------------|-----|------------------------------------------------|--------------------------|
| 1 Spill       | GW-SW-SE-A |     | 0.00E+00                                       | 2.00E-02                 |

#### PRESCORE 2.0 - PRESCORE.TCL File 05/11/93 PAGE: 6 WASTE QUANTITY DAYTON WALTHER CORP - 12/14/95

#### 4. PATHWAY HAZARDOUS WASTE QUANTITY AND WASTE CHARACTERISTICS SUMMARY TABLE

| Migration Pathway      | Contaminant Value     | HWQVs*   | WCVs** |    |
|------------------------|-----------------------|----------|--------|----|
| Ground Water           | Toxicity/Mobility     | 1.00E+01 | 100    | 6  |
| SW: Overland Flow, DW  | Tox./Persistence      | 1.00E+04 | 10     | 18 |
| SW: Overland Flow, HFC | Tox./Persis./Bioacc.  | 5.00E+05 | 10     | 32 |
| SW: Overland Flow, Env | Etox./Persis./Bioacc. | 5.00E+06 | 10     | 56 |
| SW: GW to SW, DW       | Tox./Persistence      | 4.00E+00 | 10     | 2  |
| SW: GW to SW, HFC      | Tox./Persis./Bioacc.  | 1.00E+03 | 10     | 10 |
| SW: GW to SW, Env      | Etox./Persis./Bioacc. | 1.00E+02 | 10     | 6  |
| Soil Exposure:Resident | Toxicity              | 1.00E+04 | 10     | 18 |
| Soil Exposure: Nearby  | Toxicity              | 1.00E+04 | 10     | 18 |
| Air                    | Toxicity/Mobility     | 1.00E+01 | 10     | 3  |

<sup>\*</sup> Hazardous Waste Quantity Factor Values

Note:

SW = Surface Water GW = Ground Water

DW = Drinking Water Threat HFC = Human Food Chain Threat Env = Environmental Threat

<sup>\*\*</sup> Waste Characteristics Factor Category Values

# PRESCORE 2.0 - PRESCORE.TCL File 05/11/93 REFERENCES DAYTON WALTHER CORP - 12/13/95

1. USGS, Water Data Report KY-93-1, Water Resources Data, Kentucky Water Year 1993.

PAGE: 110

- 2. NUS Corporation, Final Screening Site Inspection Report, Dayton Walther Corporation, Carrollton, Kentucky, 1989.
- David M. Rymph, Manager Environmental Compliance, Dayton Walther Corp. Letter to Debby Angel, Environmental Control Supervisor, KDWM, August 4, 1994.
- 4. KDWM, Public Inquiry #9503089, 3/24/95.
- 5. USGS 7.5 Minute Topographic Maps, Vevay South and Carrollton Quadrangles.
- 6. Kentucky Nature Preserves Commission.
- 7. Commonwealth of Kentucky, NREPC, DEP, Division of Water, Permit to withdraw Public Water, #0586, Revised Dec. 7,1994.
- 8. Commonwealth of Kentucky, NREPC, Division of Water Resources, Rainfall Frequency Values for Kentucky, Revised 1979.
- 9. USDA Soil Conservation Service, Soil Survey of Carroll, Galatin and Ow en Counties, Kentucky, 1980.
- 10. Federal Register, 12-14-90, Vol. 55 No. 241.



1927 LAKESIDE PARKWAY SUITE 614 TUCKER. GEORGIA 30084 404-938-7710



C-586-2-0-202

February 26, 1990

Mr. A.R. Hanke Site Investigation and Support Branch Waste Management Division Environmental Protection Agency 345 Courtland Street, N. E. Atlanta, Georgia 30365

Subject:

HRS2 Rescore Project

40 Region IV Sites

Dear Mr. Hanke:

FIT 4 was tasked to conduct preliminary re-scoring of 40 Region IV sites using the draft final version of the revised Hazard Ranking System (version dated December 8, 1989). Re-scoring was completed as of February 9, 1990. Data for all 40 sites, including pathway, threat, and overall site scores based on three versions of the HRS, have been tabulated and are included as Enclosure 1. For your convenience, these sites have also been categorized by site score and are listed in Table 1. In addition, Table 2 lists twelve sites identified as having human food chain concerns and provides the human food chain threat scores from proposed revised to draft final HRS.

A number of sites merit specific discussion based on the re-scoring results. The first group of these consists of sites at which LSIs are either completed or underway. LCP Chemical, Meadowbrook Elementary School, National Southwire Aluminum, and Stauffer Chemical (Tarpon Springs) all have site scores above 30. Mobil Oil, however, receives a site score of 26.76. Indications are that this score may drop further due to planned changes in the model. It is therefore recommended that any further LSI work at Mobil Oil be delayed until the HRS is finalized. The second group contains sites for which LSIs are planned. Terry Creek Dredge Spoil Area and Chemfax, Inc. have site scores greater than 30. However, Blackberry Valley Landfill and American Petrofina have site scores of 13.77 and 3.74, respectively. Therefore, FIT recommends that no further LSI activity be planned for these two sites at this time.

A third group of sites includes those which appear to be candidates for LSIs. These are: Aerodex Pond and Test Cells, Ajax Chemical, Asgrow Florida Company, Cascade Park Gasification Plant, Eureka Springs Landfill, and Potter Company/Wesson. An additional evaluation of each site using the latest (February 15, 1990) version of the rule should, however, be conducted prior to initiating each study plan.



Mr. A.R. Hanke Environmental Protection Agency February 26, 1990 - page 2

Several factors have emerged that will have significant impact on data collection and sampling strategy at the SI (and in some cases, the PA) level of investigation. The first of these has been previously identified and requires continued emphasis as a major influence on efficient site screening as well as package-level scoring. This factor is source characterization, and includes information on disposal history, size, and association of specific contaminants for each source at a site. A related issue is the importance of background samples for each medium addressed.

In addition, consideration of "blended water" has been included as of the December 8 version of the rule. One example of this would be a water supply system in which water from wells/intakes within a site's target distance limit is mixed (prior to distribution) with water from unthreatened wells or intakes (i.e., outside the target distance limit). In such a case, only a portion of the system's total population would be considered for scoring as potentially affected by the threatened wells/intakes. Apportionment would also apply in a case where an entire wellfield lies within the 4-mile radius, but spans multiple distance intervals. (The specific methodology for apportionment is still under development). It can therefore be seen that complete and accurate target locations and population information will be critical to scoring.

Finally, it has been found that site scores can be drastically affected by the presence or absence of actual contamination of targets. This is defined as contamination meeting observed release criteria that will then be compared to benchmarks. Targets can include drinking water wells and intakes, fisheries, and sensitive environments. All targets that may be subject to actual contamination must be identified, and should be sampled whenever feasible, in addition to sampling shallow wastes and contaminated soils onsite.

Also enclosed for your convenience is a deliverable prepared by NUS Headquarters Support Team (HST) for EPA Headquarters providing a statistical analysis of these re-scoring results. It should be noted that the scope and intent of the HST project differed in some areas from that of the Region. FIT is available for any related discussion/clarification as desired.

If you have any questions or comments concerning this project, or desire further discussion, please contact me.

Very truly yours

Katharine A. Siders LSI/HRS Group Leader

KAS/tb

Approved:

eg Schank

# **DRAFT**

TABLE 1

| Site Score ≥30                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 <u>&lt;</u> Site Score < 30      | 10 <u>&lt;</u> Site Score < 25                                                                                                                                                     | Site Score < 10                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aerodex Pond and Test Cells Ajax Chemical Asgrow Florida Co. Cascade Park Gasif. Plant Chemfax, Inc. Crucible, Inc. (RCRA) * Escambia Treating (PRP Agreement) Eureka Springs Landfill LCP Chemical Meadowbrook Elementary School Mobil Chemical (RCRA) National Southwire Aluminum Omnivest Landfill Potter Co./Wesson Red Ridge Landfill * Stauffer Chemical (Tarpon Springs) Terry Creek Dredge Spoil Area Texaco Terminal * | Mobil Oil * S & S Flying Services * | American Olean Tile Plant * Blackberry Valley Landfill * Columbia Organics Chem. * Cotton Grove Road Landfill * Middlesboro Tannery * Southern Wood Piedmont * Superior Products * | American Petrofina Beaunit Mills BMF Industries Bush Bros. Plating Dayton Walther Forbush Metal Finishing General Tire and Rubber Kerr-McGee Chem. Nobles Sludge Pits Seaboard Waste Oil Sulfolk Chemical Tupelo Buried Drum W.R. Grace (site score may increase due to recent SSI) |

<sup>\*:</sup> Indicates site score may decrease based on planned changes in the 2/15/90 version

Table 2

Human Food Chain Threat Scores
Selected Region IV Sites
(Scores rounded to nearest integer)

| Site Name          | Proposed<br>Revised | Draft<br>Final<br>(Dec. 1989) |
|--------------------|---------------------|-------------------------------|
| Cascade Park       | 35                  | 0                             |
| Chemfax, Inc.      | 39                  | 0                             |
| Columbia Org.      | 23                  | 0                             |
| LCP Chem.          | 100                 | 0                             |
| Mobil Chem.        | 55                  | 30                            |
| Mobil Oil          | 58                  | 2                             |
| Seaboard Waste Oil | 32                  | 0                             |
| So. Wood Piedmont  | 42                  | 0                             |
| Stauffer Chem.     | 100                 | 0                             |
| Sulfolk Chem.      | 43                  | 0                             |
| Terry Creek        | 95                  | 0                             |
| W. R. Grace        | 41                  | 0                             |



## Comparison of Current, Projected Proposed Revised, and Projected Draft Final (12/15/89) Revised HRS Scores for Region 4 Sites

Enclosure 1: Page 1 of 2

|                            | Ground  | Ground Water Pathway Surface Water Pathway |                |          |                     |                |          | cpoeure Pa          | ithway         | <b></b> | Air Pathway         |                | Site Score |                     |              |
|----------------------------|---------|--------------------------------------------|----------------|----------|---------------------|----------------|----------|---------------------|----------------|---------|---------------------|----------------|------------|---------------------|--------------|
| Site Name                  | Current | Proposed<br>Revised                        | Draft<br>Final | Current  | Proposed<br>Revised | Draft<br>Final | Current  | Proposed<br>Revised | Draft<br>Final | Current | Proposed<br>Revised | Draft<br>Final | Current    | Proposed<br>Revised | Draf<br>Fina |
| Aerodex                    |         |                                            |                |          |                     | =1             |          |                     |                |         |                     |                |            |                     |              |
| Nax Chemical               |         |                                            |                | <b>\</b> |                     |                |          |                     |                |         |                     |                |            |                     |              |
| American Olean Tile        |         |                                            |                | ,        |                     |                |          |                     |                |         |                     |                |            |                     |              |
| American Petrofina         |         |                                            | _              |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Asgrow Florida Company     |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Beeunit Mille              | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Blackberry Valley Landfill |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| BMF Industries, Inc.       |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Bush Brothers Plating      |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Cascade Park Gas Plant     |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Chemiax                    | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Columbia Organics          |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Cotton Grove Road Landfill |         |                                            |                |          |                     |                | <b>\</b> |                     |                |         |                     |                |            |                     |              |
| Crucibie, inc.             |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Dayton Waither Corporation | _       |                                            |                | _        |                     |                |          |                     |                | 4       | _                   |                |            |                     |              |
| ecemble Treating           |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| ureka Springe Landfill     |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| orbush Metal Finishing     |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Beneral Tire & Rubber      |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Cerr-McGee Chemical        | i       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| .CP Chemical               | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| feedowbrook Elementary     | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Middleeboro Tennery        | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Mobil Chemical Corporation |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Mobil Oil Corporation      | _       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| lational Southwire         |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| lobies Sludge Pits         |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Omnivest Landfill          |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Potter Company/Wesson      |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Red Ridge Landfill         | 4       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| & S Flying Services        |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Seaboard Waste Oil         |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| louthern Wood Pledmont     |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| tauffer Chemical           |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Suffolk Chemical           | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Superior Products          |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| erry Creek Dredge Area     | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| exaco Terminal             | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Tupelo Buried Drum         | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| V.R. Grace                 | j       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Average                    | 1       |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |
| Median                     |         |                                            |                |          |                     |                |          |                     |                |         |                     |                |            |                     |              |

Averages and medians exclude sites for which a given pathway was not scored. 2/16/90 8:52



#### Comparison of Current, Projected Proposed Revised, and Projected Draft Final (12/15/89) Revised HRS Scores for Region 4 Sites -- Threat Summary

ire Pathway Threat Summary

Enclosure 1: Page 2 of 2

Pathway Score

Dreft

Proposed

Revised

|                                             |                |       |          | Surf  | <u>nce Water F</u> | ethwey | Threat Sun |         |         |            |           | Soil Exposure Pathway Three |       |         |       |  |  |  |
|---------------------------------------------|----------------|-------|----------|-------|--------------------|--------|------------|---------|---------|------------|-----------|-----------------------------|-------|---------|-------|--|--|--|
|                                             | Drinking Water |       | Food C   | hein  | Recre              |        |            | nmental | Pr      | nthway Sco | <b>re</b> | Reek                        |       | Nee     |       |  |  |  |
|                                             | Proposed       |       | Proposed |       | Proposed           |        | Proposed   |         |         | Proposed   |           | Proposed                    |       |         |       |  |  |  |
| Site Name                                   | Revised        | Final | Revised  | Finel | Revised            | Finel  | Revised    | Final   | Current | Revised    | Final     | Revised                     | Final | Revised | Final |  |  |  |
| Aerodex                                     |                | _     |          | _     |                    |        |            |         |         | _          |           |                             |       |         |       |  |  |  |
| Ajex Chemical                               |                |       |          | •     |                    |        |            |         |         | <b> </b>   |           |                             |       |         |       |  |  |  |
| American Olean Tile                         |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| American Petrofina                          | 1              |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Aegrow Florida Company                      |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Beaunit Mille                               |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Blackberry Valley Landfill                  |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| BMF Industries, Inc.                        |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Bush Brothers Plating                       |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Cascade Park Gas Plant                      |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Chemiex                                     |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Columbia Organice                           |                |       |          | •     |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Cotton Grove Road Landfill                  |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Crucible, Inc.                              |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Dayton Waither Corporation                  | _              |       |          | _     |                    |        |            |         |         | _          |           |                             |       |         |       |  |  |  |
| Escambia Treating                           |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Eureka Springe Landfill                     | '              |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Forbueh Metal Finishing                     |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| General Tire & Rubber                       |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Kerr-McGee Chemical                         |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| LCP Chemical                                | $\dashv$       |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Meadowbrook Elementary                      |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Middlesboro Tannery                         |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Mobil Chemical Corporation                  | i              |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Mobil Oil Corporation                       |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Netional Southwire                          | _              |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Nobles Sludge Pits                          |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Omnivest Landfill                           |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Potter Company/Wesson                       | i              |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Red Ridge Landfill                          |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
|                                             |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| S & S Flying Services<br>Seeboard Waste Oll |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
|                                             | i              |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Southern Wood Pledmont                      |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Stauffer Chemical                           |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Buffolk Chemical                            |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Superior Products                           |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Terry Creek Dredge Area                     |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Texaco Terminal                             |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Tupelo Buried Drum                          |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| W.R. Grace                                  |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Average                                     |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |
| Median                                      |                |       |          |       |                    |        |            |         |         |            |           |                             |       |         |       |  |  |  |

NS - Not Scored

Threat scores normalized where applicable.

Averages and medians exclude sites for which a given pathway was not scored.

2/16/90 8:52

DEC 12 1986

20 July 80 1

#### HAZARD RANKING SYSTEM SCORING SUMMARY

FOR

DAYTON WALTHER CORPORATION EPA SITE NUMBER KYDO59564385 CARROLLTON CARROL COUNTY, KY EFA REGION: 4

SCORE STATUS: IN PREPARATION

SCORED BY PHIL HENDERSON OF NUS CORPORATION ON 11/15/88

DATE OF THIS REPORT: 11/15/88
DATE OF LAST MODIFICATION: 11/15/88

GROUND WATER ROUTE SCORE: 44.84
SURFACE WATER ROUTE SCORE: 0.00
AIR ROUTE SCORE: 0.00

MIGRATION SCORE : 25.92

#### HRS GROUND WATER ROUTE SCORE

|     | CATEGORY/FACTOR                                                                                                                         | RAW DATA          | ASN. VALUE                                                                       | SCORE          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------|----------------|
| 1 = | OBSERVED RELEASE                                                                                                                        | NO                | ()                                                                               | Ö              |
| 2.  | ROUTE CHARACTERISTICS                                                                                                                   |                   | \                                                                                |                |
|     | DEPTH TO WATER TABLE<br>DEPTH TO BOTTOM OF WASTE                                                                                        | 47 FEET<br>9 FEET | •                                                                                |                |
|     | DEPTH TO AQUIFER OF CONCERN                                                                                                             | 38 FEET           | 2                                                                                | Z <sub>p</sub> |
|     | PRECIPITATION<br>EVAPORATION                                                                                                            | 41.0 INCHES       | <del></del>                                                                      |                |
|     | NET PRECIPITATION                                                                                                                       | 6.0 INCHE         | S 2                                                                              | 2              |
|     | PERMEABILITY                                                                                                                            | 1.0X10-4 CM/SE    | c 2                                                                              | 2              |
|     | PHYSICAL STATE                                                                                                                          |                   | 3                                                                                | 3              |
|     | TOTAL ROUTE CHARACTERISTICS S                                                                                                           | SCORE:            |                                                                                  | 11             |
| Э.  | CONTAINMENT                                                                                                                             |                   | 3                                                                                | 3              |
| 4.  | WASTE CHARACTERISTICS                                                                                                                   |                   | , <u>California B. de respensario de 1</u> 00 (100 (100 (100 (100 (100 (100 (100 |                |
|     | TOXICITY/PERSISTENCE:LEAD                                                                                                               |                   |                                                                                  | 18             |
|     | WASTE QUANTITY CUBIC YDS DRUMS GALLONS TONS                                                                                             | 0<br>4<br>0<br>0  |                                                                                  |                |
|     | TOTAL                                                                                                                                   | 1 CU. Y           | DS i                                                                             | 1              |
|     | TOTAL WASTE CHARACTERISTICS S                                                                                                           | BCORE:            |                                                                                  | 19             |
| 5.  | TARGETS                                                                                                                                 |                   | 8. W. S. (2008) (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4   |                |
|     | GROUND WATER USE                                                                                                                        |                   | 2                                                                                | 6              |
|     | DISTANCE TO NEAREST WELL AND TOTAL POPULATION SERVED NUMBER OF HOUSES NUMBER OF PERSONS NUMBER OF CONNECTIONS NUMBER OF IRRIGATED ACRES |                   |                                                                                  | 35             |
|     | TOTAL TARGETS SCORE:                                                                                                                    |                   |                                                                                  | 41             |

TOTAL TARGETS SCORE:

MZA

#### HRS SURFACE WATER ROUTE SCORE

CATEGORY/FACTOR RAW DATA ASN. VALUE SCORE ROUTE NOT SCORED 1. OBSERVED RELEASE NZA 2. ROUTE CHARACTERISTICS SITE LOCATED IN SURFACE WATER SITE WITHIN CLOSED BASIN FACILITY SLOPE INTERVENING SLOPE 24-HOUR RAINFALL DISTANCE TO DOWN-SLOPE WATER PHYSICAL STATE TOTAL ROUTE CHARACTERISTICS SCORE: N/A 3. CONTAINMENT N/A 4. WASTE CHARACTERISTICS TOXICITY/PERSISTENCE: WASTE QUANTITY CUBIC YDS DRUMS GALLONS TONS TOTAL TOTAL WASTE CHARACTERISTICS SCORE: N/A 5. TARGETS SURFACE WATER USE DISTANCE TO SENSITIVE ENVIRONMENT COASTAL WETLANDS FRESH-WATER WETLANDS CRITICAL HABITAT DISTANCE TO STATIC WATER DISTANCE TO WATER SUPPLY INTAKE MATRIX VALUE AND TOTAL POPULATION SERVED NUMBER OF HOUSES NUMBER OF PERSONS NUMBER OF CONNECTIONS NUMBER OF IRRIGATED ACRES

#### HRS AIR ROUTE SCORE

|         | CATEGORY/FACTOR | 3                                       | RAW DATA | ASN. VALUE              | SCORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|-----------------|-----------------------------------------|----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| į,      | OBSERVED RELEAS | E<br>E                                  | NO       | O                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u></u> | WASTE CHARACTER | RISTICS                                 |          |                         | and any any activities of the same and any activities and any activities and activities activities activities and activities activities activities and activities activi |
|         | REACTIVITY:     |                                         |          | NA WITE TO A CONTROL OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | INCOMPATIBILITY |                                         |          | MATRIX VALUE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | TOXICITY        |                                         |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | WASTE QUANTITY  | CUBIC YARDS<br>DRUMS<br>GALLONS<br>TONS |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                 | TOTAL                                   |          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | TOTAL WASTE CHA | RACTERISTICS S                          | CORE:    |                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### 3. TARGETS

POPULATION WITHIN 4-MILE RADIUS

- 0 to 0.25 mile
- 0 to 0.50 mile
- O to 1.0 mile
- O to 4.0 miles

DISTANCE TO SENSITIVE ENVIRONMENTS COASTAL WETLANDS FRESH-WATER WETLANDS CRITICAL HABITAT

DISTANCE TO LAND USES
COMMERCIAL/INDUSTRIAL
PARK/FOREST/RESIDENTIAL
AGRICULTURAL LAND
PRIME FARMLAND
HISTORIC SITE WITHIN VIEW?

TOTAL TARGETS SCORE:

N/A

AIR ROUTE SCORE (Sa) = 0.00

#### FOR

#### SITE: DAYTON WALTHER CORPORATION AS OF 11/15/88

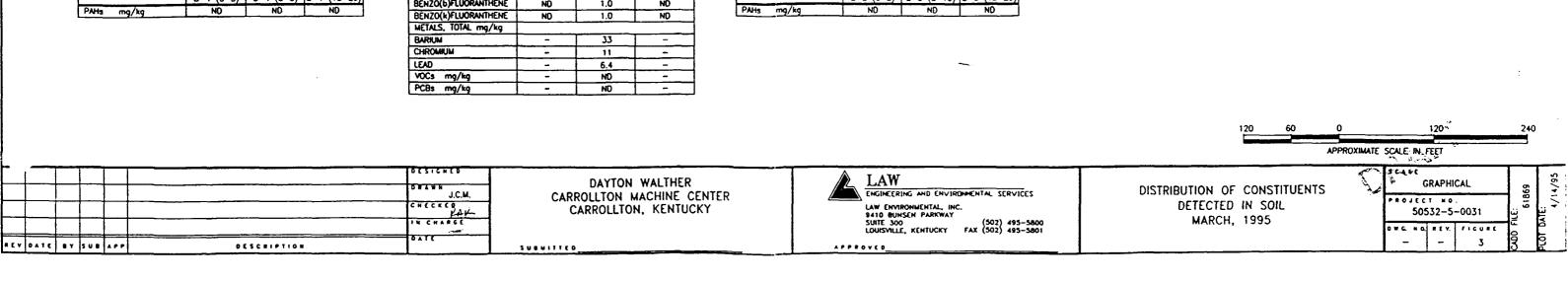
#### GROUND WATER ROUTE SCORE

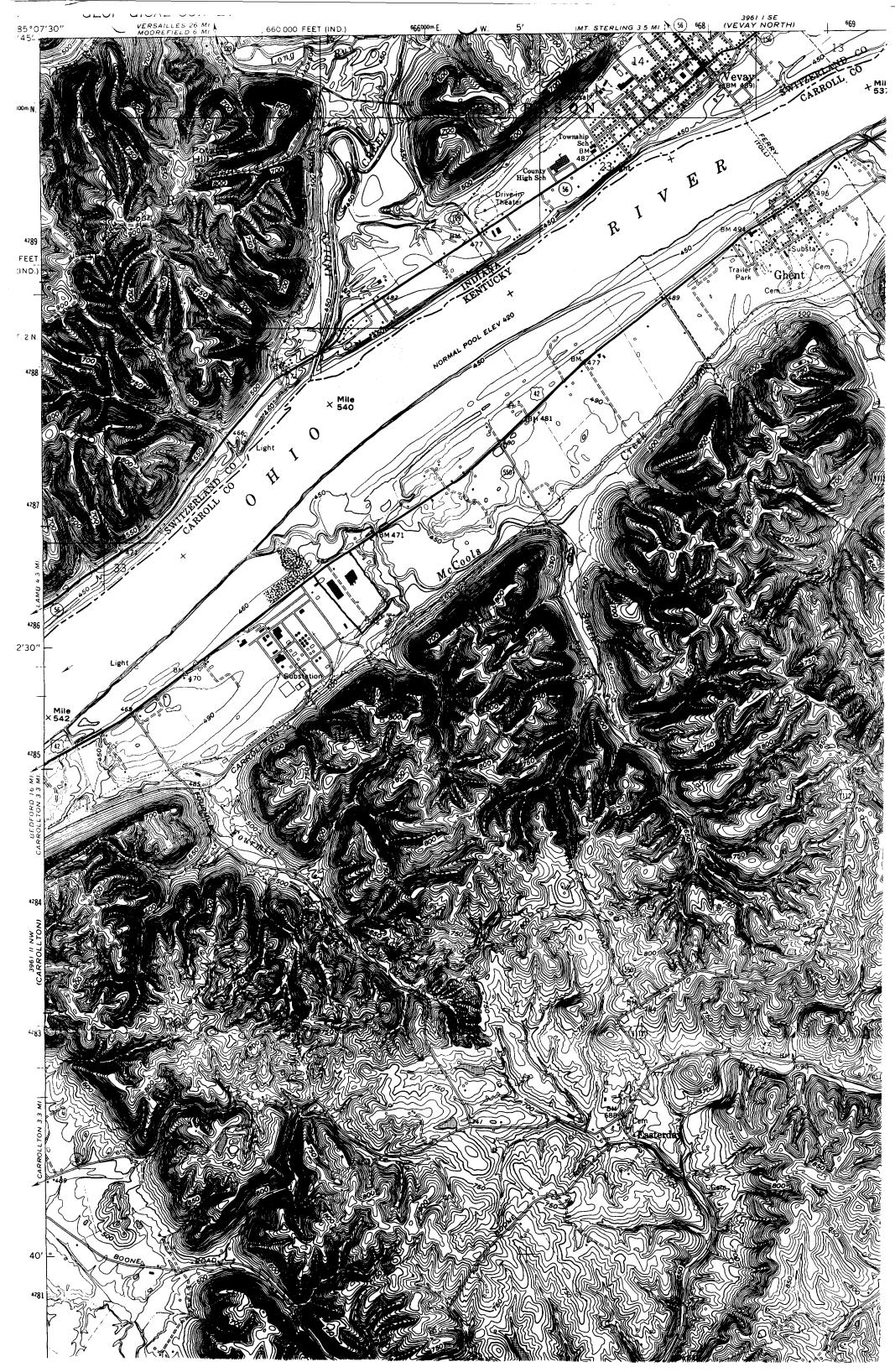
ROUTE CHARACTERISTICS 11 CONTAINMENT WASTE CHARACTERISTICS X 19 X 41 TARGETS

= 25707 /57,330  $\times$  100 = 44.84 = 5...

#### SURFACE WATER ROUTE SCORE

FOUTE CHARACTERISTICS Q ХО CONTAINMENT WASTE CHARACTERISTICS X 0 TARGETS X O


= 0  $/64,350 \times 100 = 0.00 = S_{max}$ 


#### AIR ROUTE SCORE

OBSERVED RELEASE 0 /35,100 X 100 = 0.00 =  $S_{min}$ 

#### SUMMARY OF MIGRATION SCORE CALCULATIONS

|                                                                                      | S     | 58      |
|--------------------------------------------------------------------------------------|-------|---------|
| GROUND WATER ROUTE SCORE (S_w)                                                       | 44.84 | 2010.63 |
| SURFACE WATER ROUTE SCORE (S)                                                        | 0.00  | 0,00    |
| AIR ROUTE SCORE (S.,)                                                                | 0.00  | 0.00    |
| 5° 0 - + 5° 0 - + 5° 0 - 1                                                           |       | 2010.63 |
| √ (S <sup>2</sup> o w + S <sup>2</sup> w + S <sup>2</sup> w x x r )                  |       | 44.84   |
| S <sub>M</sub> = √ (S <sup>m</sup> gw + S <sup>m</sup> gw + S <sup>m</sup> gyr)/1.73 |       | 25,92   |





# U.S. EPA REGION IV

# **SDMS**

# **Unscannable Material Target Sheet**

|                        | te ID: <u>KYD 0 5 9 5 6 4 3 8 S</u> |
|------------------------|-------------------------------------|
| Site Name: Dayton Walt | her Corp                            |
|                        |                                     |
|                        |                                     |
|                        |                                     |
| Nature of Material:    |                                     |
|                        |                                     |
| Map:                   | Computer Disks:                     |
| Photos:                | CD-ROM:                             |
| Blueprints:            | Oversized Report:                   |
| Slides:                | Log Book:                           |
| Other (describe):      |                                     |
| Amount of material:    |                                     |

### **FINAL SCREENING SITE INSPECTION REPORT DAYTON WALTHER CORPORATION CARROLLTON, KENTUCKY EPA ID #KYD059564385**

Prepared Under TDD No. F4-8802-21 CONTRACT NO. 68-01-7346

Revision 0

**FOR THE** 

**WASTE MANAGEMENT DIVISION** U.S. ENVIRONMENTAL PROTECTION AGENCY

**JANUARY 17, 1989** 

**NUS CORPORATION** SUPERFUND DIVISION

**Prepared By** 

Phillip Henderson **Project Manager** 

**Reviewed By** 

**Approved By** 

**Assistant Regional** 

**Project Manager** 

Murray Warner, P.E. Regional Project Manager

# **TABLE OF CONTENTS**

| Secti | <u>ion</u>                                                   | Page No.    |
|-------|--------------------------------------------------------------|-------------|
| EXEC  | CUTIVE SUMMARY                                               | ES-1        |
| 1.0   | INTRODUCTION                                                 | 1           |
| 1.1   | Objectives                                                   | 1           |
| 1.2   | Scope of Work                                                | 1           |
| 2.0   | SITE CHARACTERIZATION                                        | 3           |
| 2.1   | Site Background and History                                  | 3           |
| 2.2   | Site Description                                             | 6           |
|       | 2.2.1 Site Features                                          | 6           |
|       | 2.2.2 Waste Characteristics                                  | 7           |
| 3.0   | REGIONAL POPULATIONS AND ENVIRONMENTS                        | 8           |
| 3.1   | Population and Land Use                                      | 8           |
|       | 3.1.1 Demography                                             | 8           |
|       | 3.1.2 Land Use                                               | 8           |
| 3.2   | Surface Water                                                | 9           |
|       | 3.2.1 Climatology                                            | 9<br>9<br>9 |
|       | 3.2.2 Overland Drainage                                      | 9           |
|       | 3.2.3 Potentially Affected Water Bodies                      | 9           |
| 3.3   | Groundwater                                                  | 10          |
|       | 3.3.1 Area Geology                                           | 10          |
|       | 3.3.2 Hydrogeology                                           | 10          |
|       | 3.3.3 Aquifer Use                                            | 11          |
| 3.4   | Summary of Potentially Affected Populations and Environments | 11          |
| 4.0   | FIELD INVESTIGATION                                          | 13          |
| 4.1   | Sample Collection                                            | 13          |
|       | 4.1.1 Sample Collection Methodology                          | 13          |
|       | 4.1.2 Duplicate Samples                                      | 13          |
|       | 4.1.3 Description of Samples and Sample Locations            | 13          |
| 4.2   | Sample Analysis                                              | 16          |
|       | 4.2.1 Analytical Support and Methodology                     | 16          |
|       | 4.2.2 Analytical Data Quality                                | 16          |
|       | 4.2.3 Presentation of Analytical Results                     | 16          |
| 5.0   | SUMMARY                                                      | 22          |
| DEEE  | DENCES                                                       | 22          |

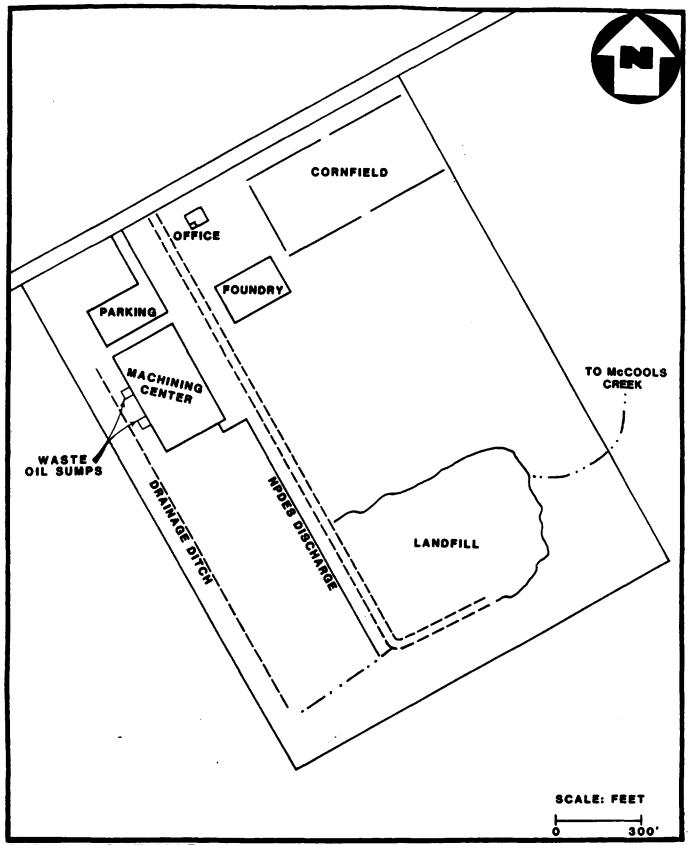
# Table of Contents (continued)

|            |                                                                                | Page No. |
|------------|--------------------------------------------------------------------------------|----------|
| TABLES     |                                                                                |          |
| Table 1    | Sample Codes, Descriptions, and Locations                                      | 14       |
| Table 2    | Summary of Organic Analytical Results Surface Soil and Subsurface Soil Samples | 17       |
| Table 3    | Summary of Inorganic Analytical Results                                        | 1,       |
|            | Surface Soil and Subsurface Soil Samples                                       | 19       |
| Table 4    | Summary of Organic and Inorganic Analytical Results                            |          |
|            | Sediment Samples                                                               | 20       |
| FIGURES    |                                                                                |          |
| Figure 1   | Site Location Map                                                              | 4        |
| Figure 2   | Site Layout Map                                                                | 5        |
| Figure 3   | Sample Location Map                                                            | 15       |
| APPENDIX A | A Topographic Map                                                              |          |
| APPENDIX I | Analytical Results                                                             |          |
| APPENDIX ( | Site Investigation Form                                                        |          |

### **EXECUTIVE SUMMARY**

Dayton Walther Corporation produces brake drums for tractor trailers in a two-part operation that uses a foundry and a machining center. The brakes are cast in sand molds at the foundry and then moved to the machining center where the finished product is produced. The plant has been in operation since 1972.

In May of 1985, Dayton Walther was referred to the Kentucky Uncontrolled Site Section following an inspection by the Division of Waste Management. According to the Preliminary Assessment completed as a result of this inspection, Dayton Walther had at one time used 1,1,1-trichloroethane (TCA) as a degreaser in plant operations at the machining center. Floor washings from the plant, and therefore possibly TCA, ended up in the waste oil sumps. During the inspection, the plant manager at Dayton Walther stated that one of the sumps had leaked in the past. At this time, Dow Corning, located adjacent to Dayton Walther, was detecting traces of TCA in their onsite monitoring wells. Since Dow was regulated under RCRA and did not use TCA in any of their current operations, it was suspected that Dayton Walther was the source. Dow Corning now attributes the TCA found in their monitoring wells to an old landfill on their property that was active in the 1960's. Based on this information, and information collected during the Field Investigation, the groundwater contamination can no longer be solely attributed to Dayton Walther.


The facility is located in the Ohio River Valley which is a steep-sided, U-shaped trough, formed by erosion of limestone bedrock by glacial melts during the Pleistocene age. The trough was then filled with alluvium. The thickness of these alluvial sediments is approximately 150 feet. These deposits form a productive alluvial aquifer which is recharged by local rainfall and at times by the Ohio River. Depth to the water table is about 50 feet and groundwater flow is generally toward the Ohio River. Underlying the alluvial aquifer is the Silurian limestone aquifer. Due to the availability of groundwater in the alluvial aquifer and the high mineral content of water within the limestone aquifer it is not used in the study area. The Silurian limestone aquifer is hydrologically connected to the alluvial aquifer and does provide some recharge to it.

Groundwater contamination and, to a lesser extent, surface water contamination, are the primary pathways of concern. The nearest well is located 1500 feet to the west, on the property of Dow Corning. This well is used by 260 persons. There are also four municipal wells in the town of Ghent that service 1266 meters. These wells are approximately 2.7 miles northeast of the site. Surface

water runoff and discharges from Dayton Walther eventually enter the Ohio River which is used for commercial and recreational fishing.

Analytical results of samples collected during this investigation show that surficial soils in the immediate vicinity of the waste oil sumps are contaminated. However, subsurface soil samples collected at a depth slightly below that of the bottom of the waste oil sumps show less contamination.

Based on the findings of this study FIT 4 recommends that this site be reevaluated under the revised HRS as a candidate for a Listing Site Inspection.



SITE LAYOUT MAP DAYTON WALTHER CORPORATION CARROLLTON, KENTUCKY

FIGURE :





Dayton Walther Corporation P.O. Box 1022 Dayton, Ohio 45401 Telephone 513/296-3113

August 4, 1994

VIA OVERNIGHT COURIER

Ms. Deborah Lucas Angel Environmental Control Supervisor Florence Regional Office Kentucky Division of Waste Management 7964 Kentucky Drive, Suite 8 Florence, KY 41042

Re:

ERT#A3648 and A2806

Dear Ms. Angel:

This is response to your July 8, 1994, letter and to provide you a status report of the ongoing remedial activities for the petroleum spills that occurred on March 21, 1994 and April 7, 1994. This letter supplements the previous letters addressed to William C. Berger dated March 22, 1994 and April 13, 1994. In summary, the Carrollton Machine Center (CMC) has conducted an initial response including the removal of all accumulated free product, two phases of excavation of petroleum impacted soils, removal of accumulated rain water/ground water from the excavations, and conducted an initial sampling of the bottom and side walls of the excavated area.

The CMC has been used continuously since 1967 for the machining of various automotive and heavy duty truck parts. As discussed in the letters from Geoffrey Lieberman to William C. Berger dated March 22, and April 13, 1994, petroleum impacted soils and pockets of oil from historic operations were encountered during the excavation for these two spills. To date, Dayton Walther has not been able to separate the petroleum impacts from these two recent spills from historic operations at the facility due to the similarity of the products involved. To date, Dayton Walther has been unable to reach background levels of oil and grease after pumping tens of thousands of gallons of liquid including free product and accumulated rain water and after the removal and off-site disposal of 908 total cubic yards of petroleum impacted soils and railroad ties from these two recent spills and the historic operations.

Since the receipt of the analytical results of the excavation on June 10, Dayton Walther . Corporation has solicited proposals from three environmental consulting firms for alternatives to the original strategy of excavation/pump and haul with off-site disposal. Those three firms



Ms. Deborah Lucas Angel August 4, 1994 Page 2

included The Payne Firm of Cincinnati, Ohio; the Evergreen Group of Crestwood, Kentucky, and Law Environmental of Louisville, Kentucky. Based on the proposals and interviews of the consulting firms, Dayton Walther Corporation has selected Law Environmental, Inc. as their consultant to conduct a site assessment and develop remedial alternatives for the remaining residually impacted soils. Dayton Walther is currently developing a scope of work for the initial phase of a site assessment with Law Environmental. The results of the site assessment will be provided to the state of Kentucky upon completion.

Attached per your request of July 8, you will find the following information:

Appendix A - <u>Clean up material and excavated soils</u> - attached are special waste tracking documents acknowledging a receipt by Waste Management of Kentucky, Inc. for 908 cubic yards of petroleum contaminated soil, rail road ties, dirt, and rocks impacted from the recent spills and historic operations.

Appendix B - Amounts of recovered product - All industrial wastewater from CMC Center is pumped and hauled daily for off-site disposal at Lubrichem Environmental in Elizabethtown, Kentucky. The industrial waste water from our facility includes machine coolants, tramp oils and floor cleaning solutions. All spilled product, potentially impacted stormwater, as well as accumulated groundwater within the excavations were pumped and co-mingled with our industrial waste water at the time of the initial response to the spills. CMC does not have an accurate amount of the actual recovered product. Attached is a summary of the waste hauling records for the months of March and April for the industrial wastewater including coolant and waste oil hauled to Lubrichem Environmental. The increased volumes of water for the period immediately following March 21 and April 7, can be attributed to the pumping by the vacuum truck in the immediate vicinity of the oil spill as well as the conservative approach to pump and dispose of all accumulated groundwater and potentially impacted stormwater in the vicinity of the spill areas.

Appendix C - <u>Analytical results of any environmental monitoring</u> - Attached is a site plan showing the approximate extent of the soil excavation. A site plan for the sampling locations summary of analytical results, and the original laboratory sheets for the oil and grease sampling in the vicinity of the soil excavation.

Ms. Deborah Lucas Angel August 4, 1994 Page 3

Appendix D - <u>Copies of proposals</u> - Attached are copies of proposals received from Law Environmental, Evergreen Group and The Payne Firm for site assessments at the Carrollton Machine Center.

The initial response activities to date by Dayton Walther has eliminated any imminent substantial danger to the public health and the environment from the two spills. Through the assistance of our consultant, CMC will characterize the extent of the release as necessary to determine the affect of the release on the environment. We shall take actions necessary to correct the affect of the release on the environment and will continue to update the commonwealth of Kentucky on the results of the site assessment activities per KRS 224.01-400.

If there are any further questions regarding this report, please do not hesitate to contact me at 313-513-4469 or Geoffrey Lieberman at the Carrollton Machine Center, 502-732-6635.

Respectfully submitted,

David M. Rymph

Manager Environmental

Compliance

DMR/tlk

cc: Geoffrey Lieberman

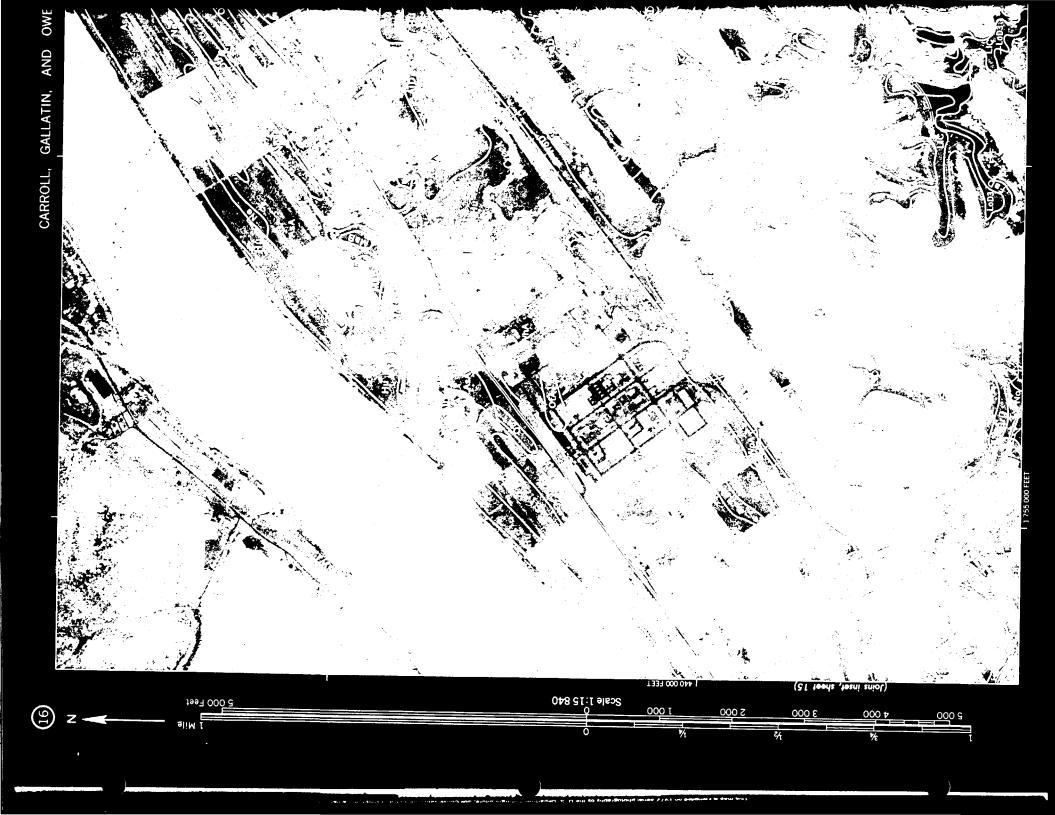
DIVISION OF WATER RESOURCES

DEPARTMENT FOR NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION
ENGINEERING MEMORANDUM NO. 2 (4-30-71), REVISED (6-1-79)

# 24 HOUR RAINFALL (INCHES)

PAGE 1 OF 3

# FREQUENCY (YEARS)


| COUNTY       | 1     | 2   | 5            | 10    | 25  | 50          | 100 | PMP          |
|--------------|-------|-----|--------------|-------|-----|-------------|-----|--------------|
|              |       |     |              |       |     |             |     |              |
| ADAIR        | 2.8   | 3.3 | 4.1          | 4.6   | 5.4 | 5.9         | 6.4 | 36.5         |
| ALLEN        | 2.8   | 3.4 | 4.3          | 4.8   | 5.6 | 6.1         | 6.6 | 37.0         |
| ANDERSON     | 2.7   | 3.1 | 3.9          | 4.4   |     | 5.6         | 6.2 | 35.0         |
| BALLARD      | 3. 1  | 3.6 | 4.5          | 5.1   | 5.8 | 6.5         | 7.0 | 36.5         |
| BARREN       | 2.8   | 3.3 | 4.2          | 4.7   |     | 6.0         | 6.5 | 36.5         |
| BATH         | 2.5   | 3.0 | 3.7          | 4.2   | 4.9 | 5.4         | 5.9 | 35.0         |
| BELL         | 2. 6  | 3.1 | 3.9          | 4.5   | 5.2 | 5.8         | 6.3 | 37.0         |
| BOONE        | 2.6   | 3.0 | 3 <b>. 7</b> | 4.2   |     | 5.4         | 5.9 | 34.0         |
| BOURBON      | 2.6   | 3.0 | 3.8          | 4.3   | 5.0 | 5.4         | 6.0 | 35.0         |
| BOYD         |       | 2.7 | 3.5          | 4.0   | 4.6 | 5.0         | 5.5 | 35.0         |
| BOYLE        |       | 3.2 | 4.0          | 4.5   | 5.2 | 5.7         | 6.3 | 35.5         |
| BRACKEN      | 2.5   | 3.0 | 3 <b>.7</b>  | 4.2   | 4.9 | 5.3         | 5.8 | 34.5         |
| BREATHITT    | 2.6   | 3.0 | 3.7          | 4.3   | 4.9 | 5.4         | 5.9 | 36.0         |
| BRECKINRIDGE | 2.8   | 3.3 | 4.1          | 4.6   | 5-4 | 5.9         | 6.4 | 35.5         |
| BULLITT      |       | 3.2 | 4.0          | 4.5   | 5.2 | 5.7         | 6.3 | 35.5         |
| BUTLER       | 2.9   | 3.4 |              | 4.8   |     | 6.1         | 6.6 | 36.0         |
| CALDWELL     | 30    | 3.4 |              | 4.9   |     | 6.3         |     | 36.5         |
| CALLOWAY     | 3. 1° | 3.5 |              | 5.0   |     | 6.5         |     | 37.0         |
| CAMPBELL     | 2.5   | 3.0 |              | 4.2   |     |             |     | 34.0         |
| CARLISLE     |       | 3.6 |              | 5.1   |     | 6.5         |     | <b>37.</b> 0 |
| CARROLL      |       | 354 |              | 4.3   |     | 5.5         |     | 34.5         |
| CARTER       |       | 2.8 |              | 4.0   |     |             |     | 35.0         |
| CASEY        | •     | 3.2 |              | 4.5   |     | 5.8         |     | 36.0         |
| CHRISTIAN    | 3.0   | 3.4 |              | 4.9   |     | 6.3         |     | 36.5         |
| CLARK        | 2.6   | 3.0 |              | 4.3   |     | 5.5         |     | 35.5         |
| CLAY         | 2.6   | 3.0 |              | 4 - 4 |     | 5.6         |     | 36.5         |
| CLINTON      | 2.8   | 3.3 |              | 4.7   |     | 6.0         |     | 37.0         |
| CRITTENDEN   | 3.0   | 3.5 |              | 4.9   |     | 6.3         |     | 36.0         |
| CUMBERLAND   |       | 3.3 |              | 4-7   |     | 6.0         |     | 37.0         |
| DAVIESS      | 2.8   |     |              | 4.7   |     | 6.0         |     | 35.5         |
| EDMONSON     |       | 3.3 |              | 4.7   |     | 6.0         |     | 36.0         |
| ELLIOTT      |       | 2.8 |              | 4.1   |     |             |     | 35.5         |
| ESTILL       | 2.6   |     |              |       | 5.0 |             |     |              |
| FAYETTE      | 2.6   | 3.1 | 3.8          | 4.3   | 5.1 | <b>5.</b> 5 | 6.1 | 35.5         |
| FLEMING      | 2.5   | 2.9 | 3.6          | 4.1   | 4.8 | 5.3         | 5.8 | 35.0         |
| PLOYD        | 2. 5  | 2.9 | 3.7          | 4.2   | 4.8 | 5.3         | 5.7 | 36.0         |
| PRANKLIN     | 2.6   | 3.1 | 3.9          | 4.4   | 5.1 | 5.5         | 6.1 | 35.0         |
| PULTON       | 3. 1  | 3.7 | 4.5          | 5.2   | 5.9 |             | 7.1 | 37.5         |
| GALLATIN     | 2.6   | 3.1 | 3.8          | 4.3   |     |             | 6.0 | 34.5         |
| GARRARD      | 2.6   | 3.1 | 3.9          | 4_4   | 5.2 | 5.6         | 6.2 | 36.0         |

# Soil survey of $C_0 \#_{39}$ Carroll, Gallatin, and Owen Counties, Kentucky $ADD \#_{7}$





United States Department of Agriculture Soil Conservation Service In cooperation with Kentucky Agricultural Experiment Station



### GUIDE TO MAPPING UNITS

For a full description of a mapping unit, read both the description of the mapping unit and the description of the soil series to which the mapping unit belongs. In referring to a capability unit, read the introduction to the section it is in for general information about its management. Other information is given in tables as follows:

Acreage and extent, table 1, page 8. Estimated yields, table 2, page 33. Woodland interpretations, table 3, page 36.

Engineering uses of the soils, tables 5, 6, and 7, pages 42 through 51.
Limitations of soils for town and country planning, table 8, page 52.

| Мар         |                                                                  |      | Capability<br>unit | Woodland<br>suitability<br>group |
|-------------|------------------------------------------------------------------|------|--------------------|----------------------------------|
| symbo       | Mapping unit                                                     | Page | Symbo1             | Number                           |
| A1D         | Alluvial land, steep                                             | 6    | VIIe-1             |                                  |
| As A        | Ashton silt loam, 0 to 4 percent slopes                          | 8    | I-5                | 1o2                              |
| Во          | Boonesboro-Alluvial land complex                                 | 9    | Vw-1               | lol                              |
| BrC         | Brashear silty clay loam, 6 to 12 percent slopes                 | 10   | IIIe-2             | 2c1                              |
| BrD         | Brashear silty clay loam, 12 to 20 percent slopes                | 10   | IVe-2              | 2c1                              |
| <b>B</b> sD | Brassfield silt loam, 12 to 25 percent slopes                    | 11   | VIe-4              | 4d1                              |
| EdD         | Eden silty clay loam, 12 to 20 percent slopes                    | 12   | VIe-3              | 3c2                              |
| EfE3        | Eden flaggy silty clay, 20 to 30 percent slopes, severely eroded | 12   | yIIe-2             | 3c2                              |
| E1A         | Elk silt loam, 0 to 2 percent slopes                             | 13   | I-5                | 201                              |
| E1B         | Elk silt loam, 2 to 6 percent slopes                             | 13   | IIe-1              | 201                              |
| E1C         | Elk silt loam, 6 to 12 percent slopes                            | 13   | IIIe-1             | 201                              |
| FaD         | Fairmount flaggy silty clay, 12 to 20 percent slopes             | 14   | VIe-4              | 4d1                              |
| FrF         | Fairmount-Rock outcrop complex, 30 to 60 percent slopes          | 15   | VIIs-2             | 4x1                              |
| HeC         | Heitt silt loam, 6 to 12 percent slopes                          | 16   | IIIe-2             | 3c1                              |
| Hu          | Huntington silt loam                                             | 17   | I-1                | 101                              |
| LaC         | Lakin loamy fine sand, 2 to 12 percent slopes                    | 17   | IIIs-1             | 3s1                              |
| Lc          | Lawrence silt loam                                               | 18   | IIIw-3             | 2w1                              |
| L1B         | Lowell silt loam, 2 to 6 percent slopes                          | 19   | IIe-2              | 2c1                              |
| L1C         | Lowell silt loam, 6 to 12 percent slopes                         | 19   | IIIe-2             | 2c1                              |
| LoD3        | Lowell silty clay loam, 12 to 20 percent slopes, severely eroded | 19   | VIe-10             | 2c1                              |
| MaB         | Markland silt loam, 2 to 6 percent slopes                        | 20   | IIIe-13            | 2c1                              |
| MbD         | Markland soils, 12 to 35 percent slopes                          | 20   | VIIe-3             | 2c1                              |
| Mc          | McGary silt loam                                                 | 21   | IfIw-2             | 3w2                              |
| Ne          | Newark silt loam                                                 | 22   | IIw-1              | lwl                              |
| NfB         | Nicholson silt loam, 2 to 8 percent slopes                       | 23   | IIe-5              | 201                              |
| No          | Nolin silt loam                                                  | 23   | I-1                | lol                              |
| Ot A        | Otwell silt loam, 0 to 2 percent slopes                          | 24   | IIw-3              | 3w1                              |
| Ot B        | Otwell silt loam, 2 to 6 percent slopes                          | 24   | IIe-4              | 3w1                              |
| OtC         | Otwell silt loam, 6 to 12 percent slopes                         | 24   | IIIe-4             | 3w1                              |
| Ro          | Robertsville silt loam                                           | 25   | IVw-1              | 1w2                              |
| #hA:        | Wheeling silt loam, 0 to 2 percent slopes                        | 27   | I-5                | 201                              |
| WhD         | Wheeling silt loam, 12 to 20 percent slopes                      | 27   | IVe-1              | 201                              |
| WoA         | Woolper silty clay loam, 0 to 2 percent slopes                   | 28   | IIs-2              | 2c1                              |
| WoC         | Woolper silty clay loam, 6 to 12 percent slopes                  | 28   | IIIe-2             | 2c1                              |
| WoD         | Woolper silty clay loam, 12 to 20 percent slopes                 | 29   | IVe-2              | 2c1                              |
| Zp          | Zipp silty clay loam                                             | 30   | IVw-1              | 1w2                              |

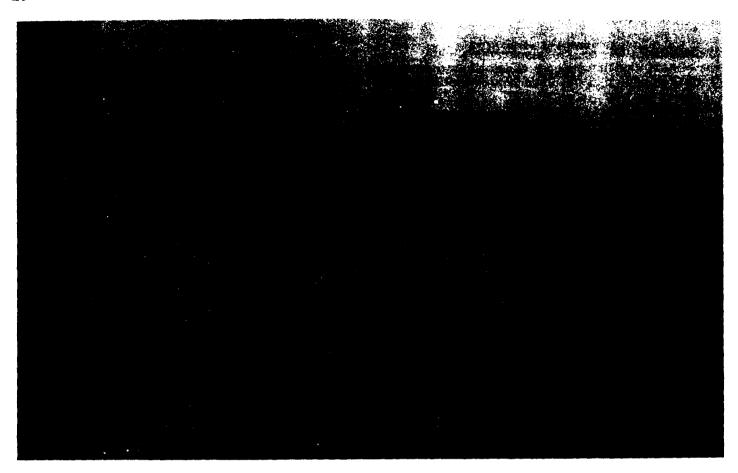



Figure 10.-Area of Robertsville silt loam where corn has been ruined by wetness.

outcrop is mapped only in a complex with Fairmount soils. It is so intricately intermingled with Fairmount soils that it could not be separated at the scale mapped.

Rock outcrop supports very little plant growth, but clumps of grass, brush, or stunted trees grow in

cracks and crevices.

### Wheeling Series

The Wheeling series consists of deep, well-drained, nearly level and strongly sloping soils on stream terraces along the Ohio River. These soils formed in alluvium of mixed origin. They are underlain by sand and

gravel at a depth of 3 to 6 feet.

In a representative profile the surface layer is brown silt loam about 9 inches thick. The subsoil is mostly brown and extends to a depth of about 60 inches. In sequence from the top, it is about 5 inches of silt loam; about 16 inches of silt clay loam; about 8 inches of clay loam; about 16 inches of dark yellowish-brown fine sandy loam; and about 6 inches of brown gravelly sandy loam. The underlying material is stratified layers of sand, gravel, and silt

The rooting zone is deep. Permeability is moderate. Runoff is slow or medium. Available moisture capacity is high, and organic-matter content is low. Reaction generally is slightly acid to strongly acid throughout the profile, but the surface layer is less acid if it is limed. Natural fertility is moderate. The surface layer is easy to till and can be worked over a wide range of moisture content without clodding or crusting. These soils are flooded in some places when streamflow is unusually high.

Large areas of the towns of Warsaw and Carrollton are on these soils, and many of these areas are used for industrial and residential sites. Burley tobacco, corn, truck crops, and peach or apple orchards are

grown on these soils.

Representative profile of Wheeling silt loam, 0 to 2 percent slopes, 4 miles west of Warsaw, 0.7 mile west of Markland Dam, 100 feet south of U.S. Highway No 42:

Ap—0 to 9 inches, brown (10YR 4/3) silt loam; moderate fine, granular structure; very friable; many roots neutral; clear, smooth boundary.

B1t—9 to 14 inches, brown (7.5YR 4/4) silt loam; moder ate, fine, subangular blocky structure; friable; man; roots; few thin clay films; neutral; gradual, smoot boundary.

B21t—14 to 30 inches, brown (7.5YR 5/4) light silty clar loam; moderate, medium, subangular blocky structure friable; common roots; common thin clay films slightly acid; gradual, smooth boundary.

B22t—30 to 38 inches, brown (7.5YR 5/4) clay loam; moderate, medium, subangular blocky structure; friable few roots, common moderately thick clay films; medium acid; clear, smooth boundary.

B31—38 to 54 inches, dark yellowish-brown (10YR 4/4) very fine sandy loam; weak, medium, subangular blocky structure; friable; few thin clay films; strongly

acid; gradual, wavy boundary. IIB32—54 to 60 inches, brown (7.5YR 4/2) gravelly sandy loam; very weak, coarse, subangular blocky structure; very friable; a few sand grains are coated and bridged with clay; strongly acid; diffuse boundary.

IIC—60 inches +, stratified layers of loose sand, gravel,

The solum ranges from 40 to 60 inches in thickness. Bedrock is at a depth of more than 10 feet. The Ap horizon is brown (10YR 4/3) or dark grayish-brown (10YR 4/2) fine sandy loam to silt loam. The B horizon is 10YR or 7.5YR in hue, 4 or 5 in value, and 3 to 6 in chroma. The B1 and B2 horizon range from loam to light silty clay loam. The B3 horizon ranges from very fine sandy loam to gravely sandy loam. The C horizon is stratified layers that range from very fine sand to gravel.

Wheeling soils are near Ashton, Elk, Otwell, Lakin, and Markland soils on stream terraces. They have a lighter colored A horizon than Ashton soils and a coarser textured B horizon than Elk soils. Wheeling soils are better drained than Otwell soils and lack the fragipan that is present in those soils. They are finer textured than Lakin soils and coarser textured than Markland soils.

Wheeling silt loam, 0 to 2 percent slopes (WhA).-This soil is in large smooth areas. It has the profile described as representative for the series.

Included with this soil in mapping were a few narrow areas of soils that have slopes of more than 2 percent, many small areas of soils that have a surface layer of fine sandy loam, and small areas of soils that have a subsoil of reddish-brown gravelly sandy clay below a depth of 18 to 24 inches. Also included were areas of soils that have a yellowish-brown or darkbrown surface layer.

Erosion is not a hazard on this soil.

This soil can be cropped year after year and productivity maintained if it is properly fertilized, practices are used to help maintain organic-matter content, and good tillage practices are followed. It is suited to all pasture and hay plants that are commonly grown in the area and to corn, tobacco, and small grain. In addition, it is well suited to truck crops, orchards, vineyards, and nursery stock plants (fig. 11). Capability unit I-5; woodland suitability group 201.

Wheeling silt loam, 12 to 20 percent slopes (WhD). This soil is commonly in areas that are away from the Ohio River. It is in toe-slope positions at the base of the steep hills that border the river valley and in fairly long narrow areas that border the more nearly level areas of Wheeling soils. The areas range from 10 to 40 acres in size. This soil has a profile similar to the one described as representative for the series, but the surface layer is generally 4 to 7 inches thick.

Included with this soil in mapping were a few small

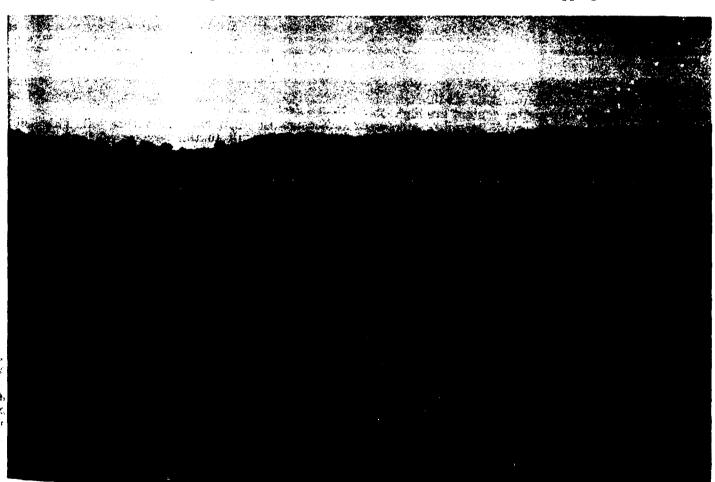



Figure 11.—Nursery stock on Wheeling silt loam.

areas of soils that have slopes of less than 12 percent, a few areas of soils that have slopes of more than 20 percent, and small areas of soils that have a fine sandy loam surface layer. Also included were small areas of soils on uplands; these soils are underlain by gravel and sand at a depth of less than 24 inches.

This soil is suited to row crops commonly grown in the area, such as corn and tobacco. It is better suited to all of the pasture and hay plants that are commonly grown in this area and to orchards, vineyards, and nursery stock plants. If this soil is cultivated, there is a very severe hazard of erosion. Consequently, cropping systems and other conservation practices are needed to slow runoff and keep soil losses to a minimum. Capability unit IVe-1; woodland suitability group 201.

### Woolper Series

The Woolper series consists of well-drained, nearly level to strongly sloping soils or foot slopes of alluvial fans at the base of steep hills. These soils formed in colluvium or local alluvium that washed mostly from Fairmount soils.

In a representative profile the surface layer is dark-brown silty clay about 6 inches thick. The subsoil is silty clay that extends to a depth of about 54 inches. It is dark brown in the upper 9 inches, dark yellowish brown in the next 27 inches, and yellowish brown in the lower 12 inches. The underlying material is yellowish-brown silty clay that reaches to a depth of 65 inches or more.

The rooting zone is deep. Permeability is moderately slow, and runoff is medium to rapid. Available moisture capacity and organic-matter content are high. Reaction generally is slightly acid to mildly alkaline throughout the profile. Natural fertility is moderately high. The plow layer is somewhat difficult to till because of the high content of clay.

Most areas of these soils are used for hay or pasture, but some areas are used for burley tobacco or corn.

Representative profile of Woolper silty clay loam, 12 to 20 percent slopes, about 2 miles south of Carrollton, 25 yards west of State Highway No. 55, 0.25 mile south of State Highway No. 389:

- Ap—0 to 6 inches, dark-brown (10YR 3/3) silty clay loam; moderate, fine and medium, granular structure; firm; common fine roots; very dark grayish-brown (10YR 3/2) ped coatings; mildly alkaline; clear, smooth boundary.
- B21t—6 to 15 inches, dark-brown (10YR 3/3) silty clay; moderate, medium, angular blocky structure; firm; few fine roots; nearly continuous, very dark grayish-brown (10YR 3/2) clay films; few, small, soft, brown sand-stone and shale fragments; mildly alkaline, clear, smooth boundary.
- B22t—15 to 42 inches, dark yellowish-brown (10YR 4/4) silty clay; moderate, fine and medium, angular blocky structure; very firm; few fine roots; many clay films; mildly alkaline; gradual, smooth boundary.
- B23t—42 to 54 inches, yellowish-brown (10YR 5/4) silty clay; weak, fine and medium, angular blocky structure; very firm; few clay films; mildly alkaline; clear,
- smooth boundary.
  C-54 to 65 inches +, yellowish-brown (10YR 5/4) silty clay; many, medium, faint, brown (10YR 4/3) and

grayish-brown (2.5Y 5/2) mottles; massive; very firm; few, small, dark-brown concretions; few pressure faces; mildly alkaline.

The solum ranges from 40 to 60 inches in thickness. Bedrock is at a depth of 4 feet to more than 10 feet. Coarse fragments range from 0 to 10 percent throughout the profile. The Ap horizon is dark-brown (10YR 3/3) or very dark grayish-brown (10YR 3/2 or 2.5Y 3/2) silty clay loam or silt loam. The B21t horizon has the same color range as the Ap horizon, and its texture is heavy silty clay loam or silty clay. The B22t and B3t horizons range from brown (7.5YR 4/4 or 10YR 4/3) to light clive brown (2.5Y 5/6) silty clay or clay. Some profiles have gray mottles below a depth of about 2 feet. The matrix and mottles of the C horizon are in shades of brown, gray, or clive. The C horizon is silty clay or clay in texture.

Woolper soils are near Brashear, Eden, Fairmount, Boonesboro, Huntington, Nolin, Newark, and Zipp soils. They are darker colored than Brashear and Eden soils and deeper to bedrock than Fairmount or Boonesboro soils. Woolper soils are finer textured than Huntington, Nolin, and Newark soils and are better drained than Zipp soils.

Woolper silty clay loam, 0 to 2 percent slopes (WoA).—This soil is in long, narrow areas on low-lying stream terraces and alluvial fans. The areas range from 10 to 30 acres in size. Areas of this soil are often flooded during winter, but damage to crops is slight during the growing season. This soil has a profile similar to the one described as representative for the series, but gray mottles are commonly at a depth of 24 to 36 inches.

Included with this soil in mapping were small areas of soils that have slopes of more than 2 percent; a few, small, poorly drained areas of soils; and small areas of soils that have a surface layer of dark grayish-brown silt loam 4 to 10 inches thick. Also included were areas of soils that have rock at a depth of less than 4 feet.

Erosion is not a hazard on this soil. This soil is somewhat difficult to till, because of the moderately fine-textured plow layer.

This soil can be cropped year after year and productivity maintained if the soil is properly fertilized, practices are used to help maintain organic-matter content, and good tillage practices are followed. Such crops as alfalfa and small grain may be damaged by flooding in winter and early in spring. Some of the better suited pasture and hay plants are tall fescue, orchardgrass, smooth bromegrass, timothy, ladino clover, annual lespedeza, and sericea lespedeza. Capability unit IIs-2; woodland suitability group 2c1.

Woolper silty clay loam, 6 to 12 percent slopes (WoC)—This soil is in narrow bands below Fairmount soils at the base of hills. The areas range from 10 to 40 acres in size.

Included with this soil in mapping were a few, small, seepy areas and small areas of soils that have slopes of less than 6 percent.

This soil is suited to crops commonly grown in the area, such as corn, tobacco (fig. 12), and small grain. Among the better suited pasture and hay plants are orchardgrass, tall fescue, timothy, alfalfa, red clover, white clover, sericea lespedeza, and annual lespedeza. If this soil is cultivated, there is a severe hazard of erosion. Consequently, cropping systems and other conservation practices are needed to slow runoff and keep

|                                    | Depth                                   | to- | Depth                                    |                                                                              | Classification                         |                                 | Coarse<br>fraction<br>greater<br>than<br>3 inches |  |
|------------------------------------|-----------------------------------------|-----|------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|---------------------------------|---------------------------------------------------|--|
| Soil series and map<br>symbols     | Seasonal<br>high water<br>table Bedrock |     | from<br>surface                          | USDA texture                                                                 | Unified                                | AASHO 1                         | than                                              |  |
| Nicholson NfB—Continued            |                                         |     | 36-60                                    | Silty clay                                                                   | MH or CH                               | A-7                             |                                                   |  |
| Nolin: No                          | >3                                      | >4  | 060                                      | Silt loam                                                                    | CL or ML                               | A-6 or A-4                      |                                                   |  |
| Otwell: <sup>2</sup> OtA, OtB, OtC | 11½-2                                   | >5  | 0-8<br>8-21<br>21-63                     | Silt loam Silty clay loam Silty clay loam (fragipan).                        | ML or CL<br>CL or ML<br>CL or ML       | A-6 or A-4<br>A-6<br>A-6        |                                                   |  |
| Robertsville: Ro                   | 10-1/2                                  | >5  | 0-18<br>18-60                            | Silt loam<br>Silty clay loam<br>(fragipan).                                  | ML or CL<br>CL or ML                   | A-4<br>A-6                      |                                                   |  |
| Wheeling: WhA WhD                  | >5                                      | >10 | 0-14<br>14-30<br>30-38<br>38-54<br>54-60 | Silt loam Silty clay loam Clay loam Very fine sandy loam Gravelly sandy loam | ML-CL<br>ML-CL<br>ML<br>ML or SM<br>SM | A-4<br>A-6<br>A-4<br>A-4<br>A-2 |                                                   |  |
| Woolper: WoA, WoC, WoD             | >3                                      | >4  | 0-6<br>6-60                              | Silty clay loam<br>Silty clay or clay                                        | CL<br>CL, MH or CH                     | A-6<br>A-7                      | 0-15<br>0-15                                      |  |
| <b>Z</b> ipp:* Z <sub>P</sub>      | 0-1/2                                   | >10 | 0-5<br>5-60                              | Silty clay loam<br>Silty clay or clay                                        | CL<br>MH, CH or CL                     | A-7 or A-6<br>A-7               |                                                   |  |

<sup>&</sup>lt;sup>1</sup> Estimates based on 100 percent passing the 3-inch sieve.

<sup>1</sup> Floods during periods of unusually high streamflow.

merical difference between the liquid limit and the plastic limit. It indicates the range of moisture content within which the soil material is plastic.

### Town and Country Planning

The limitations of the soils should be considered in planning town and country uses of land. In table 8 the degree and kind of limitations for each soil in this survey are listed for 11 different uses. The information is not intended to eliminate the need for onsite investigations for specific uses, but to serve as a guide for screening sites and for planning more detailed investigations. A rating of slight indicates that the limitations, if any, are of minor consequence and are easy to overcome. A rating of moderate indicates that corrective measures are needed to overcome the limitation when the soil is used. Cost of corrective measures is an important consideration. A rating of severe indicates that corrective measures are needed to overcome the limitations. These measures may be too expensive to justify. Any limitation, however, can be overcome by adequate corrective measures.

The kinds of limitations, expressed in terms of soil characteristics or properties, are shown only for the moderate and severe ratings. Some of the terms may have special meaning. These are defined in the Glossary at the back of this survey.

The criteria used to rate the soils vary somewhat among the different uses. The ratings in table 8 are described in the following paragraphs:

The ratings for septic tank filter fields are based o soil permeability, depth to seasonal high water table depth to bedrock, surface rockiness and stoniness slope, and hazard of flooding. Possible pollution hazards to a water supply source are not a consideration here, but this would be a severe limitation on som soils such as those of the Lakin series.

Sewage lagoons are shallow ponds that are used fo disposal of sewage by oxidation. The ratings for thi use are based on permeability (basin floor), slopedepth to bedrock, percent of coarse fragments, surfactioniness, class of soil material at the site, hazard of flooding, and organic-matter content in the soil.

Sanitary landfills are areas used for disposal of trash and garbage. It is assumed that the operation will be by trench method. No importation of fill of cover material is considered in the ratings. The railings are based on depth to seasonal high water tables slope, depth to bedrock, surface stoniness and rock ness, texture of the surface layer, and hazard of flooding.

The soils are rated for shallow excavations for base ments, pipelines, cemeteries, etc. The ratings are base on the soil properties that affect the ease and amour of excavation. Included are depth to seasonal wate table, slope, depth to bedrock, texture, stoniness, an percentage of coarse fragments.

The soils are rated for low building foundation. The ratings are for undisturbed soils that are used 1 support foundation footings for houses, or other low buildings no higher than three stories. Footings at

significant to engineering-Continued

| Percentag                                | ge less than 3                    | inches passii                                | ng siev <del>e –</del>                    |                                                  | Available                                                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Corrosivity to-                       |                                                     |  |
|------------------------------------------|-----------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|--|
| No. 4<br>(4.7 mm)                        | No. 10<br>(2.0 mm)                | No. 40<br>(0.42 mm)                          | No. 200<br>(0.074 mm)                     | Permea-<br>bility                                | water<br>capacity                                             | Reaction                                            | Shrink-swell<br>potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Uncoated<br>steel                     | Concrete                                            |  |
| 100                                      | 100                               | 95–100                                       | 90-95                                     | <0.2                                             | 0.08-0.15                                                     | 5.6-7.8                                             | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High                                  | Low.                                                |  |
| 100                                      | 100                               | 90–100                                       | 7090                                      | 0.6-2.0                                          | 0.19-0.23                                                     | 6.6-7.8                                             | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low                                   | Low.                                                |  |
| 100<br>100<br>100                        | 100<br>100<br>100                 | 90-100<br>95-100<br>95-100                   | 70–90<br>75–95<br>85–95                   | 0.6-2.0<br>0.6-2.0<br><0.2                       | 0.19-0.23<br>0.17-0.21<br>0.06-0.14                           | 5.1-6.5<br>4.5-5.5<br>4.5-5.5                       | Low<br>Low<br>Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Moderate<br>Moderate<br>Moderate      | Moderate.<br>Moderate.<br>High.                     |  |
| 100<br>100                               | 100<br>100                        | 90–100<br>95–100                             | 70– <del>9</del> 0<br>85–95               | 0.6-2.0<br><0.2                                  | 0.19-0.23<br>0.06-0.14                                        | 4.5-6.5<br>4.5-5.5                                  | Low<br>Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High                                  | Moderate.<br>Moderate.                              |  |
| 100<br>100<br>100<br>100<br>100<br>80–95 | 100<br>100<br>100<br>100<br>75-90 | 90-100<br>95-100<br>90-100<br>70-85<br>50-60 | 70-90<br>75-95<br>70-80<br>40-55<br>20-30 | 0.6-2.0<br>0.6-2.0<br>0.6-2.0<br>2.0-6.0<br>>6.0 | 0.19-0.23<br>0.17-0.21<br>0.16-0.17<br>0.08-0.10<br>0.05-0.07 | 6.6-7.3<br>6.1-6.5<br>5.6-6.0<br>5.1-5.5<br>5.1-5.5 | LowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLowLow | Low_<br>Moderate<br>Low<br>Low<br>Low | Low.<br>Low.<br>Moderate.<br>Moderate.<br>Moderate. |  |
| 95–100<br>95–100                         | 95–100<br>95–100                  | 90–100<br>90–100                             | 80-95<br>85-95                            | 0.2-0.6<br>0.2-0.6                               | 0.17-0.21<br>0.15-0.18                                        | 6.1-7.8<br>6.1-7.8                                  | Moderate<br>High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moderate<br>High                      | Low.<br>Low.                                        |  |
| 100<br>100                               | 100<br>100                        | 95–100<br>95–100                             | 85–95<br>85–95                            | 0.6-2.0<br><0.2                                  | 0.17-0.21<br>0.15-0.18                                        | 6.6-7.8<br>6.6-7.8                                  | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High                                  | Low.                                                |  |

Subject to flooding.
Perched water table.

3

assumed to be 1 foot wide and a minimum of 18 inches deep. The ratings are based on the depth to the seasonal high water table, depth to bedrock, slope, surface rockiness and stoniness, hazard of flooding, and shrink-swell potential. Slope is more restrictive for subdivision locations than for other areas.

Camp areas are areas used for tents and trailers. The ratings for this use are based on depth to bedrock, permeability, depth to seasonal high water table, surface rockiness and stoniness, texture of surface layer, and hazard of flooding. Slope is more restrictive for trailer parks than for tent areas.

The ratings for streets and low-cost roads are based on depth to seasonal high water table, slope, depth to rock, surface rockiness and stoniness, hazard of flooding, and shrink-swell potential. Slope is a more restrictive factor for parking lots and streets than for main highways.

Playgrounds are areas used intensively for team sports such as baseball, football, volleyball, and other sports that normally require a nearly level, finished area and are subject to heavy foot traffic. The ratings are based on depth to seasonal high water table, soil permeability, slope, depth to bedrock, surface rockiness and stoniness, texture of the surface layer, and hazard of flooding.

Picnic areas are subject to less intensive use than playgrounds. The ratings are based on depth to seasonal high water table, slope, depth to bedrock, surface stoniness and rockiness, texture of the surface

layer, and hazard of flooding. These factors are less restrictive for picnic areas than for playgrounds.

The soils are rated for lawns and landscaping with the assumption that soil material at the site, rather than trucked-in fill or topsoil, will be used. The ratings are based on depth to seasonal water table, slope, depth to bedrock, surface stoniness and rockiness, texture of the surface layer, and hazard of flooding.

The ratings for paths and trails are for nonintensive uses such as cross-country hiking and bridle paths that allow random movement of people. It is assumed that the areas will be used as they occur in nature. The ratings are based on depth to seasonal high water table, slope, surface rockiness and stoniness, texture of the surface layer, and hazard of flooding.

# Formation and Classification of the Soils

This section has two parts. In the first part, the factors of soil formation and their relation to the soils in Carroll, Gallatin, and Owen Counties are described. In the second part, the system of soil classification is briefly described, and the soil series are placed in some categories of the system.

### **Factors of Soil Formation**

The characteristics of soils depend on climate, on the physical and chemical composition of parent material, on relief, on plant and animal life, and on time. The relative importance of these factors is not con-

# COMMONWEALTH OF KENTUCKY NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET

DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WATER
FRANKFORT, KENTUCKY 40601

### PERMIT TO WITHDRAW PUBLIC WATER

Permit Number: 0586

Issued to: Dow Corning Corporation

4770 Highway 42E

Carrollton. Kentucky 41008

The Natural Resources and Environmental Protection Cabinet authorizes the above named party to withdraw Public Water of the Commonwealth of Kentucky. This permit has been issued under provisions of KRS Chapter 151.125, 151.140 and 151.150 and regulations promulgated with respect to the withdrawal of public waters. Issuance of this permit does not relieve the permittee from the responsibility of obtaining any other permits or licenses required by this Cabinet, or other state, federal or local agencies. Withdrawals are restricted to the stated quantities, times and locations specified below. This permit represents a limited right of use and does not vest ownership nor absolute right to withdrawal or use of Public Water, nor does it guarantee that requested amounts will be available for use at all times. In times of drought or emergency, the Cabinet may temporarily alter the conditions of the permit. Any violation of the Water Resources Act of 1966 as amended is subject to penalties as set forth in KRS 151.990 and other applicable provisions of law.

The location of the authorized water withdrawal is as follows:

from a field of 13 wells located on company property, approximately 3.0 miles east of Carrollton, on the Ohio River at RMI 441.5 (541 bP), in Carroll County.

Lat. Long. 38°42'38"N 85°06'10"W

Water withdrawals are limited to the following rates from the specified location:

| <b>Jan</b> 12 m | gd <b>Apr</b>  | 14 mgd | July | 15 mgd | Oct | 14 mgd |
|-----------------|----------------|--------|------|--------|-----|--------|
| Feb 12 m        | gd <b>May</b>  | 14 mgd | Aug  | 15 mgd | Nov | 13 mgd |
| Mar 13 m        | gd <b>June</b> | 15 mgd | Sept | 15 mgd | Dec | 12 mgd |

Conditions to this permit are as follows: Withdrawal rates must be accurately measured by meter or other device, as approved by the Cabinet.

Withdrawals from these wells shall not interfere with any existing users in the area. If such withdrawals have an adverse effect on previously permitted or other lawful users in the area, the company shall reduce withdrawals to rates that no longer cause adverse effects, or shall provide all affected users with sufficient water to meet their needs.

Issued: August 18, 1967 Latest Revision: December 7, 1994

Manager, Water Resources Branch

Division of Water

### OHIO RIVER MAIN STEM

### 03277200 OHIO RIVER AT MARKLAND DAM, KY

LOCATION.--Lat 38°46'29", long 84°57'52", Gallatin County, Hydrologic Unit 05090203, at left end of Markland Dam, 0.4 mi upstream from Stephens Creek, 3.4 mi west of Warsaw, and at mile 531.5.

DRAINAGE AREA. --83,170 mi<sup>2</sup>, approximately.

PERIOD OF RECORD. -- May 1970 to current year.

REVISED RECORDS. -- WDR KY-88-1: 1987.

GAGE, -- Gate opening and water-stage recorders on left bank. Turbine recorders in powerplant on right bank. Datum of headwater gage 0.5 mi upstream is 443 ft Ohio River datum. Datum of tailwater gage 0.4 mi downstream is 35 ft lower.

REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 11, 15-24, 30, Dec. 1-17, 31, Feb. 1-12, May 6 to Aug. 3, and Sept. 1-30. Records poor. Daily discharge computed from U.S. Army Corps of Engineers' Lock books and turbine flows. Flow regulated by Chio River system of locks, dams, and reservoirs upstream from station.

COOPERATION. -- U.S. Army Corps of Engineers.

90 PERCENT EXCEEDS

29100

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Jan. 26, 1937, reached a stage of 76.1 ft (tailwater gage).

| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993<br>DAILY MEAN VALUES |                     |           |          |            |           |                  |           |            |                |                |                |                |
|--------------------------------------------------------------------------------------------------|---------------------|-----------|----------|------------|-----------|------------------|-----------|------------|----------------|----------------|----------------|----------------|
| DAY                                                                                              | OCT                 | NOV       | DEC      | JAN        | FEB       | MAR              | APR       | MAY        | JUN            | JUL            | AUG            | SEP            |
| 1                                                                                                | 33800               | 22400     | 118000   | 112000     | 106000    | 128000           | 382000    | 248000     | 28300          | 33200          | 15100          | 15000          |
| 2                                                                                                | 26500               | 24800     | 102000   | 140000     | 96700     | 111000           | 379000    | 213000     | 39200          | 56700          | 18800          | 17200          |
| 3                                                                                                | 42700               | 42100     | 87500    | 164000     | 76400     | 126000           | 371000    | 185000     | 18700          | 107000         | 12700          | 21400          |
| 4                                                                                                | 41700               | 27100     | 71500    | 173000     | 68400     | 190000           | 357000    | 155000     | 28300          | 85500          | 20500          | 35900          |
| 5                                                                                                | 28600               | 45500     | 57000    | 215000     | 57700     | 313000           | 337000    | 142000     | 60700          | 90400          | 23600          | 51500          |
| 6                                                                                                | 28000               | 56700     | 51700    | 213000     | 49000     | 372000           | 299000    | 121000     | 66400          | 89800          | 15500          | 34000          |
| 7                                                                                                | 29400               | 60000     | 53800    | 218000     | 48700     | 375000           | 262000    | 108000     | 85600          | 68000          | 16400          | 28200          |
| 8                                                                                                | 30200               | 59300     | 43300    | 226000     | 49000     | 305000           | 238000    | 106000     | 53500          | 38600          | 20600          | 6900           |
| 9                                                                                                | 30400               | 70200     | 54200    | 222000     | 40900     | 319000           | 224000    | 84900      | 44400          | 34600          | 17700          | 23100          |
| 10                                                                                               | 32300               | 65600     | 42900    | 212000     | 33700     | 373000           | 211000    | 77600      | 71400          | 36300          | 12400          | 17800          |
| 11                                                                                               | 33300               | 53900     | 56000    | 199000     | 39600     | 345000           | 211000    | 60300      | 86400          | 24400          | 10100          | 19300          |
| 12                                                                                               | 30000               | 65000     | 83000    | 188000     | 56900     | 309000           | 198000    | 67000      | 88300          | 30300          | 19500          | 14300          |
| 13                                                                                               | 31900               | 90000     | 91600    | 194000     | 56800     | 284000           | 189000    | 76400      | 79600          | 44400          | 24500          | 14100          |
| 14<br>15                                                                                         | 34700<br>24200      | 126000    | 89900    | 201000     | 78200     | 255000<br>222000 | 193000    | 87600      | 62000<br>91000 | 41200<br>48100 | 26500<br>38000 | 16900<br>15400 |
| 13                                                                                               | 24200               | 131000    | 86300    | 214000     | 77900     | 222000           | 198000    | 74300      | 81000          | 40100          | 38000          | 13400          |
| 16                                                                                               | 20500               | 141000    | 69400    | 224000     | 78200     | 187000           | 201000    | 69000      | 54500          | 39500          | 27100          | 14300          |
| 17                                                                                               | 18000               | 122000    | 69100    | 224000     | 108000    | 181000           | 190000    | 53800      | 39500          | 23600          | 21100          | 14900          |
| 18                                                                                               | 15700               | 98800     | 122000   | 202000     | 139000    | 240000           | 181000    | 53100      | 35300          | 34000          | 22600          | 17100          |
| 19                                                                                               | 44900               | 85200     | 191000   | 174000     | 144000    | 287000           | 186000    | 55500      | 17900          | 19400          | 22500          | 13700          |
| 20                                                                                               | 47100               | 65100     | 241000   | 151000     | 126000    | 312000           | 189000    | 57800      | 21000          | 33400          | 26200          | 19800          |
| 21                                                                                               | 26600               | 47700     | 239000   | 144000     | 138000    | 311000           | 179000    | 57900      | 21800          | 26600          | 12900          | 17400          |
| 22                                                                                               | 23500               | 75800     | 221000   | 160000     | 230000    | 299000           | 162000    | 56200      | 22100          | 40000          | 13600          | 19300          |
| 23                                                                                               | 28000               | 119000    | 217000   | 174000     | 285000    | 317000           | 152000    | 48600      | 22000          | 40900          | 17900          | 18800          |
| 24                                                                                               | 30400               | 131000    | 215000   | 213000     | 327000    | 346000           | 150000    | 45700      | 33200          | 14400          | 20000          | 16600          |
| 25                                                                                               | 30400               | 150000    | 207000   | 232000     | 314000    | 369000           | 156000    | 34600      | 22700          | 12900          | 17500          | 15700          |
| 26                                                                                               | 32200               | 168000    | 200000   | 224000     | 259000    | 388000           | 202000    | 34100      | 26000          | 19400          | 16600          | 18000          |
| 27                                                                                               | 27800               | 170000    | 185000   | 226000     | 185000    | 386000           | 224000    | 26400      | 17000          | 14300          | 13600          | 24800          |
| 28                                                                                               | 21100               | 167000    | 156000   | 221000     | 150000    | 377000           | 278000    | 37100      | 21200          | 17700          | 10500          | 34800          |
| 29                                                                                               | 21900               | 156000    | 122000   | 193000     |           | 385000           | 295000    | 22200      | 26400          | 18900          | 16200          | 42600          |
| 30                                                                                               | 25500               | 133000    | 93000    | 159000     |           | 384000           | 289000    | 25200      | 32500          | 19900          | 14700          | 46800          |
| 31                                                                                               | 28800               |           | 84200    | 136000     |           | 385000           |           | 36700      |                | 20000          | 11500          |                |
| TOTAL                                                                                            | 920100              | 2769200   | 3720400  | 5948000    | 3419100   | 9181000          | 7083000   | 2520000    | 1316900        | 1223400        | 576400         | 665600         |
| MEAN                                                                                             | 29680               | 92310     | 120000   | 191900     | 122100    | 296200           | 236100    | 81290      | 43900          | 39460          | 18590          | 22190          |
| MAX                                                                                              | 47100               | 170000    | 241000   | 232000     | 327000    | 388000           | 382000    | 248000     | 91000          | 107000         | 38000          | 51500          |
| MIN                                                                                              | 15700               | 22400     | 42900    | 112000     | 33700     | 111000           | 150000    | 22200      | 17000          | 12900          | 10100          | 6900           |
| STATIS                                                                                           | TICS OF             | MONTHLY M | EAN DATA | FOR WATER  | YEARS 19  | 70 - 1993        | B, BY WAT | er year (w | Y)             |                |                |                |
| MEAN                                                                                             | 52660               | 89110     | 151100   | 146200     | 175100    | 208900           | 183100    | 130700     | 87980          | 61280          | 45210          | 42710          |
| MAX                                                                                              | 144100              | 230600    | 288700   | 289900     | 291200    | 335400           | 292200    | 286300     | 219100         | 109500         | 146200         | 143800         |
| (WY)                                                                                             | 1980                | 1986      | 1973     | 1974       | 1975      | 1975             | 1972      | 1983       | 1981           | 1972           | 1980           | 1979           |
| MIN                                                                                              | 13910               | 26500     | 42150    | 34060      | 77100     | 98440            | 61160     | 43510      | 16250          | 18530          | 13060          | 15500          |
| (WY)                                                                                             | 1992                | 1992      | 1990     | 1977       | 1992      | 1990             | 1986      | 1976       | 1988           | 1988           | 1988           | 1983           |
| SUMMAR                                                                                           | Y STATIS            | TICS      | FOF      | R 1992 CAL | ENDAR YEA | ıR               | FOR 1993  | WATER YEA  | R              | WATER          | YEARS 1970     | - 1993         |
| ANNUAL                                                                                           | TOTAL               |           |          | 31015800   |           |                  | 39343100  |            |                |                |                |                |
| ANNUAL                                                                                           |                     |           |          | 84740      |           |                  | 107800    |            |                | 114500         |                |                |
|                                                                                                  | T ANNUAL            |           |          |            |           |                  |           |            |                | 157300         |                | 1979           |
|                                                                                                  | ANNUAL              |           |          |            |           |                  |           |            | _              | 60450          |                | 1988           |
|                                                                                                  | T DAILY             |           |          | 292000     | Mar 2     |                  | 388000    | Mar 2      |                | 542000         |                | 17 1978        |
|                                                                                                  | DAILY               |           |          | 15700      | Oct 1     |                  | 6900      | Sep        | 8              | 4320           |                | 23 1984        |
|                                                                                                  |                     | MINIM YA  | m        | 24600      | Oct 2     | .,               | 14000     |            | D              | 7310           |                | 1 1988         |
|                                                                                                  | TANBOUS<br>CENT EXC | PEAK STAG | )E       | 167000     |           |                  | 257000    | .96 Mar 2  | ,              | 55.<br>257000  | .25 Dec        | 13 1978        |
|                                                                                                  | CENT EXC            |           |          | 68000      |           |                  | 62000     |            |                | 79700          |                |                |
|                                                                                                  |                     |           |          | 20000      |           |                  | 22000     |            |                | , , , , , ,    |                |                |

17800

21800